Soil Aquifer Treatment for Additional Upgrading Wastewater Effluent

Mahmoud A Elsheikh*, Mohammed E Basyony**, Mohammed R Ghazy** & Rania M Ibrahim**
*Civil Engineering Department, Menoufia University, ShebinElkom, Egypt
**Civil Engineering Department, Benha University, Benha, Egypt

Abstract
Soil Aquifer Treatment (SAT) systems can be used for upgrading partially treated wastewater by allowing it to infiltrate into the soil for tertiary treatment and storage of water to meet the growing demand of wastewater reuse. In this study, a pilot plant of three soil columns of 2 m height and 25 cm diameter were designed and fabricated to study the quality improvement of the conventional effluent treated wastewater using three types of soil (fine, medium and coarse sand). The pilot was operated under three operational phases. The first phase was worked as 4 days wetting followed by 3 days drying cycle for a period of 6 months, the second phase was worked as 3 days wetting followed by 4 days drying for a period of two months. Meanwhile the third phase worked as 5 days wetting and 2 days drying for two months. The pilot plant of columns was feeding using the effluent of Qahasesecondary wastewater treatment plant. The results indicated that, the medium sandy soil operating with 3 days wetting/4 days drying cycles had the highest removal performance for BOD, COD and TSS (64%, 38% and 86%) respectively. Fine, medium and Coarse soils can be operated under both 3 days wetting/4 days drying cycles and 5 days wetting/2 days drying cycles to meet the nitrification requirements of SAT under the Egyptian conditions.

Keywords: Soil Aquifer Treatment (SAT); Soil aquifer, Tertiary Treatment, Sewage Treatment.

Introduction
The growing competition for water around the world are leading to even greater use of the enormous water resource. As part of this trend, there has been increasable interest in the use of treated wastewater as a water resource, especially in the countries water-short resources. Stated simply, Soil Aquifer Treatment (SAT) is a process by which excess surface water is directed into the ground (either by spreading on the surface, by using recharge wells, or by altering natural conditions to increase infiltration) to replenish an aquifer.

The impaired SAT waters quality is one of many strategies that can be used, alone or in conjunction with other strategies, to increase water supplies, such as reducing water consumption, reuse of treated
wastewater or creating secondary water systems that deliver certain wastewaters directly to nonpotable uses. Aquifer recharge for the wastewater reuse has been considered and studied as a promising process to cope with the worldwide water scarcity [Elsheik & Elhamidy 2012, 21014].

SAT reclaimed water provides one of the possibilities of a supplement of groundwater with additional advantages as follows: reduction of groundwater levels decline, protection of underground freshwater in coastal aquifers against intrusion from the ocean, and storage of reclaimed water for future reuse [Miller 2006].

SAT has been found to be a low cost sustainable tertiary wastewater treatment technology, which has the ability to generate high quality effluent from secondary treated wastewater for potable and non-potable uses [Cha et al. 2006, Essandoh et al. 2006]. The soil aquifer treatment technology may be an effective tool can be applied in Egypt for improving the quality of treated effluent sewage for the safety and non-restricted irrigation use compared with the direct currently common use. Through the aquifer soil, advanced sewage treatment stage was been added by which most of the biological load will be removed and reduction in concentrations of some chemicals can be found.

Materials and methods

Soil Aquifer Treatment Simulation

These experiments were performed using a pilot plant consisting of three parallel columns reactors, each column were constructed with a plastic tube (inner diameter of 25 cm and wall thickness of 0.5 cm). Column was equipped with 8 ports at equal heights (25 cm), 1 constant head overflow weir were located at depths of 25 cm from the top of the columns and used to maintain the desired constant head at the top of the soil, and 1 column outlet at the bottom. Sampling ports were installed at depths of 50, 100 and 150 cm from the top of the Soil and used for the collection of water samples. About 20 cm of headspace above the top soil was provided to pond the wastewater effluent during the flooding. Gravel support is at the bottom of the column of 10 cm depth as shown in “Figure 1”.

Each column was filled with a kind of sand soil (coarse, medium, fine). Table 1 summarizes the characteristics of the columns soil. The columns were used to simulate a SAT system by employing three phases of cyclic operations.

Table 1. Characteristics of the column soils

<table>
<thead>
<tr>
<th>Variables</th>
<th>Column A</th>
<th>Column B</th>
<th>Column C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil classification</td>
<td>Coarse Sand</td>
<td>Medium Sand</td>
<td>Fine Sand</td>
</tr>
<tr>
<td>Dry bulk density (g/cm³)</td>
<td>1.54</td>
<td>1.56</td>
<td>1.53</td>
</tr>
<tr>
<td>Effective Size (mm)</td>
<td>0.425</td>
<td>0.3</td>
<td>0.25</td>
</tr>
<tr>
<td>Coefficient of Uniformity</td>
<td>3.6</td>
<td>2.5</td>
<td>6</td>
</tr>
</tbody>
</table>

Wastewater effluent and characteristics

Wastewater effluents were collected from QAHA wastewater treatment plant, El-Qulibya, Egypt. It receives sewage from Qaha city and it’s located at Qaha - Elqanater Road. Thus the secondary effluent from the plant, where wastewater is treated by an oxidation ditch process, was used in this study as a feed for the SAT-simulated soil columns. The quality of the influent and the effluent of the Qaha Wastewater Treatment Plant during the study period is summarized in Table 2.

Pilot Operation

The pilot plant was started work from December 2013 till September 2014 (Ten Months) to cover the yearly climate change according to Egyptian conditions and operated under three operational schedules: Phase 1 of 4 days wetting followed by 3 days drying cycle for a period of 6 months, Phase 2 of 3 days wetting followed by 4 days drying for a period of 2 months and Phase 3 of 5 days wetting and 2 days drying for 2 months using the secondary treated wastewater produced from QAHA treatment plant. The flow rate of wastewater that flow into the media was measured. The influent sample were obtained from the tank and analyzed at the same time of day to avoid change in the characteristics of the wastewater. Nine other samples (three samples for each column) at 1.5, 1 and 0.5 m soil depth were taken from the effluent the three columns (after wetting days) then the system was turned to the drying cicledays. This procedure was repeated for the ten months.

Table 2. The quality of the influent and the effluent of the Qaha Wastewater Treatment Plant during year 2014

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Influent</th>
<th>Effluent</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Av</td>
<td>Min</td>
<td>Max</td>
<td>S.D</td>
<td>Av</td>
<td>Min</td>
<td>Max</td>
<td>S.D</td>
</tr>
<tr>
<td>TSS mg/l</td>
<td>230</td>
<td>213</td>
<td>312</td>
<td>13</td>
<td>17</td>
<td>8</td>
<td>43</td>
<td>2.84</td>
</tr>
<tr>
<td>VSS mg/l</td>
<td>166</td>
<td>151</td>
<td>245</td>
<td>8.93</td>
<td>14</td>
<td>7</td>
<td>37</td>
<td>1.40</td>
</tr>
<tr>
<td>TDS mg/l</td>
<td>774</td>
<td>723</td>
<td>795</td>
<td>31</td>
<td>602</td>
<td>666</td>
<td>726</td>
<td>23.8</td>
</tr>
<tr>
<td>BOD mg/l</td>
<td>524</td>
<td>460</td>
<td>550</td>
<td>36</td>
<td>18</td>
<td>10</td>
<td>42</td>
<td>8</td>
</tr>
<tr>
<td>COD mg/l</td>
<td>777</td>
<td>725</td>
<td>805</td>
<td>33</td>
<td>49</td>
<td>22</td>
<td>77</td>
<td>7</td>
</tr>
<tr>
<td>Oil & Grease mg/l</td>
<td>29</td>
<td>23</td>
<td>41</td>
<td>7.15</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1.67</td>
</tr>
<tr>
<td>PH value</td>
<td>7.17</td>
<td>6.93</td>
<td>7.56</td>
<td>0.22</td>
<td>7.41</td>
<td>7.23</td>
<td>7.62</td>
<td>0.11</td>
</tr>
<tr>
<td>Temp °C</td>
<td>26</td>
<td>20</td>
<td>30</td>
<td>1.61</td>
<td>27</td>
<td>21</td>
<td>31</td>
<td>1.46</td>
</tr>
</tbody>
</table>
Analytical Measurements

The samples of wastewater and their characteristics are chemically and physically analyzed in different laboratories. Biochemical oxygen demand (BOD), chemical oxygen demand (COD), total Suspended Solid TSS, PH and Temperature were analyzed in the laboratory of QAHA treatment plant. While Ammonia NH3, nitrate NO3 and Phosphate P were analyzed in the Sanitary Engineering Lab in Benha faculty of Engineering, Benha and National Research Center, Cairo, Egypt. All the above mentioned parameters were analyzed according to the standard methods for examination water and wastewater 22nd edition 2005.

Percent removal efficiencies of the measured parameters were calculated from
\[\text{Re}\% = \left(1 - \frac{C}{Co}\right) \times 100 \]
(1)
Where Re is percent removal efficiency (%), C is effluent concentration (mg/l), and Co is influent concentration (mg/l).

Results and discussion

BOD and COD Removal

Wastewater contains a variety of natural and synthetic organic compounds, usually not individually identified, but collectively expressed in terms of the biochemical oxygen demand (BOD), and the chemical oxygen demand (COD). The soil with its biomass is extremely versatile and effective in decomposing natural and synthetic organic compounds that enter the soil with the wastewater. This decomposition tends to proceed more rapidly and completely under aerobic than anaerobic conditions. The fate of organic compounds in soil is normally not evaluated for each compound, but for the organic compounds collectively, as expressed by BOD and COD.

Figure 2 shows the average BOD removal through the fine, medium and coarse sandy soil at different operation. The influent BOD ranged between 42 and 10 mg/L and. The influent wastewater quality refers to quality of Qaha wastewater plant. The result indicated that, the medium sandy soil is the most affected soil with maximum removal efficiency (Re\%= 64 \%) is obtained at Phase II operation cycle (3 days wetting / 4 days drying) at a flow rate 0.158 L/min. The study of A.Akber, et al (2003) indicate that the BOD removal efficiency was 90% when using Muddy Sand and Gravelly Muddy sand. Madhavi, et al (2012) find that the clay is suitable for removing BOD & COD under frequent wetting and drying cycles.

Figures 3 shows COD removal during different operation cycles. The influent COD varied between 77 and 22mg/L, whereas the average value effluent varied between 29 and 19mg/l, for all types of soils, COD removal is not as good as BOD. This might be due to the presence of refractory organics in wastewater.

Medium sand soil is considered the most affected soil for removing COD in the phase 2 by efficiency 38%.

The study of A.Akber, et al (2003) indicate that the COD removal efficiency was 99% when using Muddy Sand and Gravelly Muddy sand. During SAT, the saturated (wet cycle) and unsaturated (dry cycle) zones of the natural soil and groundwater aquifer act as the medium in which physicochemical and biological reactions occur [Cha, et al. 2006]. These reactions substantially reduce the levels of organic and inorganic compounds leading to an improvement in water quality [Fox &Makam, 2009]. Mixing of the infiltrated wastewater with the groundwater and the slow movement through the aquifer increases the contact time with the aquifer material leading to further purification of the water [Asano &Cotruvo. 2004, Dillon, et al. 2006]. Redox conditions and residence time can have a significant influence on the kinetics of dissolved organic carbon (DOC) degradation and may affect its removal efficiency [Grunheid, et al. 2005].
TSS Removal

Total suspended solids (TSS) are usually rather fine and mainly in organic form (sewage sludge, bacteria, fibrous materials, algae cells, etc.). The soil, however, is a very effective filter, and suspended solids should be essentially completely removed from the wastewater after about 1 m of percolation (M. Al-Senaft, et. al 2005). The TSS at the inlet varied between 43 and 8 mg/L. After the application of SAT, the TSS dropped to 1 mg/L in the three phases. The Highest Re% of TSS was obtained in the case of the medium sandy soil with value 86% at phase 2 operation cycle. Reductions of microbial in infiltrate wastewater were demonstrated using survival experiments. The reductions in microbial pathogens were attributed to a combination of physical removal processes and the activity of indigenous microorganisms [Toze & Bekele 2009].

Ammonia & Nitrate Removal

The nitrogen removal processes in a biological filter mainly involves several ecological processes, including ammonification, aerobic ammonium oxidation, nitrite oxidation, anaerobic denitrification, heterotrophic nitrification, aerobic denitrification, anaerobic ammonium oxidation, biological nitrogen fixation, dissimulator nitrate reduction, and Achaea ammonium oxidation (Ji et al. 2013, Satoh & Rulin 2004). According to previous research, nitrification and denitrification are the main mechanisms that are responsible for eliminating nitrogen from sewage water (Dong & Sun 2007; Wang et al. 2010). Kopchynski et al. (1996) studied the effects of soil type and effluent pretreatment on soil aquifer treatment. In this study, ten 2.6 m columns were operated under different flooding and drying cycles. The results indicate that effluent pre-treatment has a complete removal of ammonia.
In this experiment, For the first phase, the behavior of nitrate NO$_3^-$-N and Ammonia NH$_3^-$-N are decrease according to the stability of SAT system. Figure 5 shows the removal in Nitrate through soil column, its value was varied between 4.9 and 0.1 mg/l in the inlet for phase 1, 1.5 and 0.4 mg/l for phase 2 and varied between 1.6 to 0.2 mg/l for phase 3. The effluent of Nitrate is decrease to zero value in all soil columns at 1.5m soil depth.

Figure 6 shows the removal in ammonia through fine, medium and coarse sand soil. The level of ammonia in the inlet varied between 27.2 and 1.1 mg/l for phase 1, 25.7 and 13.5 mg/l for phase 2 and varied between 18.2 to 12.3 mg/l for phase 3. The effluent of ammonia is decrease to zero value in all soil columns, indicating the complete conversion of ammonia to nitrate. This indicates a high aerobic environment within the subsurface zone.

Highest Re% of ammonia and nitrate were obtained at Phase 2 operation cycle (3 days wetting / 4 days drying) for all types of soil with value 100%.

The unsaturated zone (during dry cycle) has available oxygen due to ability of air flow in its porous during the drying period of the SAT treatment cycle. Availability of oxygen in the unsaturated zone is highly important in promoting aerobic biodegradation processes and nitrification. Factors influencing the efficiency of SAT include characteristics of treatment site, soil and wastewater characteristics, climate and infiltration rate [Tanik&Comakoglu 1996].

Phosphate Removal

The phosphate concentration within the effluent from Qaha wastewater treatment plant was 1.1 mg/l on average. It decreases in all soils at three phases till zero value. Its known that phosphate is removed either through its adsorption by phosphate-fixing materials, such as iron oxide and aluminum oxide, or through a precipitating reaction with the calcium and magnesium ions presented in soil (Bouwer2002). Therefore, the phosphate removal in this study indicates that the phosphate removal is depending on characteristics of the soil column.

Adsorption and precipitation are reported to be the main causes of phosphorous retention in calcareous sands and soils [Wandruszka, 2006].

Conclusion

Soil column studies were carried out to evaluate the potential of SAT system in treating wastewater under varied experimental condition viz. soil type, depth of soil, initial concentration of pollutants and pH. Based on the analysis of results the following conclusions have been drawn.

- The best removal efficiency occurs at 1.5 m soil.
- SAT system with medium sandy soil was more efficient in treating wastewater compared to fine and coarse sand.
- Medium sand is the better soil for reducing BOD, COD and TSS under phase II operation cycle (3wetting / 4drying).
- Soil column experiments showed that nitrification can remove up to 90 % of ammonium nitrogen within a column of 1.5 m depth and also denitrification can be achieved during soil passage.
- Phosphate removal was generally very high.

Acknowledgements

Special grateful appreciation is expressed to Egyptian Academy of Scientific Research and Technology for
funding this work.
I would like to thank the staff of water pollution control, National Research Center, and the staff of Qaha wastewater treatment plant for their help, guidance and providing the necessary laboratory results.

References