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ABSTRACT 
This paper proposes a multi-objective Dynamic Random Neighborhood PSO (DRN-PSO) dynamic 

search based optimization algorithm for solving dual security constrained economic load dispatch 

problem in modern power systems. The proposed algorithm uses dynamically adjusted Inertia 

weight to balance global exploration and local exploitation. Numerical results were conducted on 

IEEE 30-bus test systems and compared to other optimization techniques that reported in the 

literature. The obtained results demonstrate the superiority of the proposed DRN-PSO compared to 

other optimization techniques. Additional economic benefits with secure settings are fulfilled, 

while preserving all system constraints within their permissible limits. The proposed algorithm 

improves the economic issue as well as enhancing the power system operation in the technical 

point of view with acceptable levels of emissions. So, it can be considered as a promising 

alternative algorithm for solving problems in practical large scale power systems. 

Keywords: constrained economic load dispatch, dynamic random neighborhood, environmental 

emission, multiobjective, Particle swarm optimization, transmission security. 

  

الامثل  لححملا  ى لى وحلدات التوليلد ملع اىتبلار لإيجاد التوزيع  (DRN-PSO)يقدم هذا البحث خوارزم فرد السرب الديناميكى 

تلم . الاخلذ فلى الاىتبلار ديلود التلامي   ملع  باسلتخدامدالة متعددة الاهداف تشم  تخفيض تكاليف الانتاج وتخفيض الم وثات البيئية 

ومقارنة النتائج التى تم الحصلو  ى يالا ملع نظيرتالا فلى الابحلاث السلابقة.  دضيب 30 دياسىنظام الأس وب المقترح ى ى  تطبيق

 أثبتت النتائج ا  الخوارزم المقترج يمك  اىتباره لبدي  واىد لح  مشكحت نظم القوى الكاربية.

1. INTRODUCTION 

Developing the search-based optimization algorithms 

for power system problems has become in the focus 

of power system developer due to the dramatic 

variation in fuel costs and the increased concerns of 

environmental impacts. Power system optimization 

problems including constrained economic load 

dispatch (CELD) have complex and nonlinear 

characteristics with heavy nonlinear equality and 

inequality constraints. The problem of economic 

dispatch of electric power generation aims at meeting 

the load demand at minimum operating cost while 

satisfying all unit and system equality and inequality 

constraints. This is done by obtaining the optimum 

scheduling of the committed generating unit outputs 

[1, 2]. The CELD problems have non-convex 

objective functions with nonlinear equality and 

inequality constraints. In practice, real input–output 

characteristics present higher order nonlinearities and 

discontinuities due to valve-point loading effects 

caused by the sharp increase in losses when steam 

admission valves are first opened. Generally, non-

convexities arise from valve points or combined 

cycle units, zones of prohibited operation of unit, and 

nonlinear power-flow equality constraints [3]. 

As a result of these characteristics, it is much harder 

to find the global optimum using any mathematical 

algorithms. Traditionally, electric power systems aim 

at operating in such a way that the total fuel cost is 

minimized regardless of the emission produced in the 

system. However, an increased public awareness 

regarding the harmful effects of atmospheric 

pollutants on the environment has been noticed. The 

importance of environmental impacts and the passage 

of the Clean Air Act Amendments of 1990 forced the 

utilities to adapt their design and operational 

strategies in order to reduce pollution and 

atmospheric emissions of the thermal power plants 

[4-6].  

Recently, the dramatic growing of fuel costs and the 

increased concerns of environmental issues  of power 

generating units present early alarms for the necessity 

of continuous improvement of optimization 

methodologies for solving CELD problems 

efficiently. From power system operation point of 
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view, it is necessary to minimize both emission 

impacts and generation costs simultaneously. The 

CELD problem may be formulated as multiobjective 

constrained nonlinear problem. The decision-maker 

wants to select one optimization scheme to solve the 

CELD problem. However, the selection of the 

optimal independent scheme, for solving the CELD 

problem, must take into account the following 

considerations [7]. These are the characteristics, 

types, models of available generation units, both of 

operation and maintenance costs, the technical and 

operational constraints, equipment capabilities and 

transmission line limits, and the reliability of the 

units for operational points. 

Different optimization techniques have been reported 

in the literature pertaining to the CELD problem. 

Classical methods, such as the lambda iteration 

method and gradient method have been applied to 

solve the Economic Load Dispatch (ELD) problems. 

However, unfortunately, these methods are not 

feasible in practical power systems owing to the non-

linear characteristics of the generators and non-

smooth cost functions. Consequently, many powerful 

mathematical optimization techniques that are fast 

and reliable, such as non-linear programming and 

dynamic programming have been employed to solve 

the ELD problems. However, due to the non-

differential and non-convex characteristics of the cost 

functions, these methods were also unable to locate 

the global optima [7]. Meanwhile, convex CELD 

problems are efficiently solved through traditional 

local search algorithms such as lambda iteration 

(which ignores network constraints) [1] and linear 

programming [2]. 

Modern heuristics optimization techniques were 

considered as practical tools for non-linear 

optimization problems [8]. Particle swarm 

optimization (PSO) [9, 10] marks one of the most 

popular classes of nature-inspired optimizers and has 

its roots in artificial life and social psychology. PSO 

is a population based stochastic optimization 

technique developed by Eberhart and Kennedy in 

1995 and inspired by social behavior of bird flocking 

or fish schooling [9]. The PSO method was originally 

intended for simulating the social behavior of a bird 

flock, however the algorithm was simplified and it 

was realized that the individuals (typically called 

particles) were actually performing optimization. 

PSO has an uncountable number of variants of the 

basic algorithm. These include theoretical and 

empirical investigations of the dynamics of the 

particles, parameter selection and control, and 

applications of the algorithm to a wide spectrum of 

real world problems from diverse fields of science 

and engineering [11-17].  

Recently, PSO has been successively applied to 

various fields of power system optimization 

problems such as for economic dispatch problem 

considering generation constraint [8], for minimizing 

the non-smooth cost function of economic dispatch 

problem [18, 19], scheduling the generation outputs 

considering lagrangian relaxation method [20], 

reactive power and voltage control [21-22], optimal 

design of power system stabilizer [23], optimal 

power flow [24], state estimation [25], unit 

commitment problem [26] and for reactive power 

control [27]. 

The multi-objective generation dispatch using PSO 

with multiple fuel option were presented in [28] 

while, in [29], the multi-objective generation 

dispatch using PSO was presented for electricity 

markets [30] presented a procedure using PSO for 

obtaining the optimal design of a neuro-sliding mode 

controller for the transient stability enhancement of 

multi machine power systems with unified power 

flow controller (UPFC).  

This paper is concerned with solving the CELD 

problem considering the emission minimization as 

well as operating cost as multiobjective problem. The 

considered problem is solved using DRN-PSO 

algorithm and the obtained results are compared to 

those reported in the literature. The tested case study 

is the standard IEEE 30 bus test system. The rest of 

the paper is organized as follow: section 2 presents 

the related work, section 3 demonstrates the problem 

formulation, section 4 presents the proposed 

algorithm, and finally section 5 describes the tested 

case studies with a comparative analysis to previous 

work reported. 

2. PSO BACK GROUND AND RELATED 

WORK 

a) Traditional PSO algorithm 

In the PSO method the particles are initially placed at 

random positions in the search-space, moving in 

randomly defined directions. The direction of a 

particle is then gradually changed so it will start to 

move in the direction of the best previous positions 

of itself and its peers, searching in their vicinity and 

hopefully discovering even better positions with 

regard to some fitness measure. Each particle is 

treated as a point in an n-dimensional space. The ith 

particle is represented as 𝑥𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛) . The 

best previous position of the ith particle is recorded 

and represented as 𝑝𝑖 = (𝑝𝑖1 , 𝑝𝑖2, … , 𝑝𝑖𝑛) . The index 

of the best particle among all the particles in the 

population is represented by the subscript 𝑔. The rate 

of the position change (velocity) for particle 𝑖 is 

represented by𝑣𝑖 = (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑛). The particles 

are manipulated according to the following equations 

[10]: 

𝑣𝑖𝑑 = 𝑤𝑖𝑣𝑖𝑑 + 𝑐1𝑟𝑎𝑛𝑑( )(𝑝𝑖𝑑 − 𝑥𝑖𝑑) +

𝑐2𝑟𝑎𝑛𝑑( )(𝑝𝑔𝑑 − 𝑥𝑖𝑑)  (1) 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑    (2) 
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where 𝑑 is the dimension (1 ≤  𝑑 ≤  𝑛), 𝑐1 and 𝑐2 

are positive constants, 𝑟𝑎𝑛𝑑( )is a random function 

in the range [0,1], and 𝑤 is the inertia weight.  

The pseudo code of the procedure is as: 

---------------------------------------------------------------- 

While maximum iterations or minimum error criteria 

are not attained 

For each particle 

Initialize particle 

END 

Do 

For each particle 

Calculate fitness value 

If the fitness value is better than the 

best fitness value (𝑝𝑏𝑒𝑠𝑡) in history 

set current value as the new pbest 

End 

Choose the particle with the best fitness 

value of all the particles as the 𝑔𝑏𝑒𝑠𝑡 
For each particle 

Calculate particle velocity 

according equation (1) 

Update particle position according 

equation (2) 

End 

Particles’ velocities on each dimension are clamped 

to a maximum velocity 𝑉𝑚𝑎𝑥. If the sum of 

accelerations would cause the velocity on that 

dimension to exceed𝑉𝑚𝑎𝑥, which is a parameter 

specified by the user, then the velocity on that 

dimension is limited to 𝑉𝑚𝑎𝑥 [10]. 

b) Variants of PSO algorithm 

Similar to other population-based optimization 

techniques, convergence speed and global search 

ability are the two critical criteria for evaluating the 

performance of PSO algorithms. In the original PSO, 

all particles learn from 𝑔𝐵𝑒𝑠𝑡 in updating velocities 

and positions. Hence the algorithm exhibits a fast-

converging behavior. But on multimodal problems, a 

𝑔𝐵𝑒𝑠𝑡 located at a local optimum may trap the whole 

swarm and lead to premature convergence. Various 

variants of PSO algorithm have been proposed to 

improve the performance of PSO for global 

optimization. The existing PSO variants can be 

mainly classified into the following four categories as 

shown in Fig.1. 

 
Fig. 1 Different methods to improve PSO performance 

 

As can be seen from Fig.1, different neighborhood 

topologies aim at increasing diversity by defining 

neighborhood topologies. The neighborhoods 

topologies are used to guarantee the convergence 

[31]. When it is improperly used they will impact the 

diversity of the particles. The premature problems are 

solved by making a choice on neighborhoods 

topologies. 

The velocity update rule eq(1) illustrates that the 

third part only directs the current particle's search 

directions partially. If the current global best position 

introduces the directions which do not lead to the 

convergence point, a wrong direction message will 

be created. Especially, if the current global best 

particle catches up with a local optimum and leads 

global swarm concentrated to that position, the 

wrong direction message also lead to premature 

phenomenon.  

Kennedy and Mendes investigated the effects of 

various population topologies on PSO to seek a better 

structure that performs well on a variety of test 

problems [15]. They denoted the local version PSO 

with the ring topology and the von Neumann 

topology by RPSO and VPSO, respectively. Usually, 

a large neighborhood is better for simple 

optimization problems, and a small neighborhood is 

more suitable for complex multimodal problems [15]. 

To improve the robustness of PSO, time-varying 

structures have also been proposed [32], [33].  

In order to enhance the impacts of neighborhoods 

and keep the particle apart from 𝒈𝒃𝒆𝒔𝒕 in early 

iterations, three neighborhood topologies are carried 

in experiments [34]:  

(1) One step forward-backward topology, 

 (2) Two steps forward-backward topology, 

 (3) Stochastic one step topology  

Kennedy designed four different population 

topologies, including circle, wheel, star, and random. 

The reported results showed that population 

topologies with fewer connections might perform 

better on highly multimodal problems, while highly 

interconnected populations would be better for 

unimodal problems [35]. Suganthan [32] proposed a 

variable neighborhood operator, where during the 

initial states of the optimization, the neighborhood is 

the individual particle itself. As the number of 

generation increases, the neighborhood is gradually 

extended to include all particles.  

Mendes et al. [36] proposed a fully informed PSO 

algorithm (FIPS), in which the neighbors of each 

particle, instead of 𝑝𝑏𝑒𝑠𝑡 and  𝑔𝑏𝑒𝑠𝑡, are used to 

update the velocity. Peram et al. [37] developed the 

fitness-distance-ratio based PSO (called FDR-PSO), 

in which each particle is attracted towards the best 

previous positions visited by its neighbors.  

Hu and Eberhart [33] used dynamic neighborhood 

PSO to solve multi-objective optimization problems. 

In each generation, after calculating distance to every 
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other particle, each particle finds its new neighbors. 

Among the new neighbors, each particle finds the 

local best particle as the (𝐿𝐵𝐸𝑆𝑇). Ghosh et al. [38] 

presented a probabilistic analysis of the particle 

interaction and information exchange in a𝐿𝐵𝐸𝑆𝑇 

PSO with variable random neighborhood topology. 

Suganthan et al. [32] proposed to replace the 𝐺𝐵𝐸𝑆𝑇 

component by 𝐿𝐵𝐸𝑆𝑇 solution. They dynamically 

increase the neighborhood in order to change the 

𝐿𝐵𝐸𝑆𝑇 from 𝑃𝐵𝐸𝑆𝑇 to 𝐺𝐵𝐸𝑆𝑇 with increasing 

number of iterations. The neighborhood may be 

defined in two different ways. The simplest and 

fastest method is to consider particles just above and 

below a specific particle for which a neighborhood is 

sought. Alternatively, it could calculate distances 

between particles and choose a fraction of particles 

that are close to the particle for which a 

neighborhood is sought. This fraction can be 

increased gradually to include all particles during 

final stages of search process. This method can be 

computational intensive, if the dimension of the 

parameter space is large.  

When exploring large problem spaces, optimization 

algorithms must effectively balance exploration and 

exploitation. Generally, it is wise to first make a 

broad survey of the space, and then focus effort on 

the regions of the space that look most promising.  

 

3. PROBLEM FORMULATION 

The non-linear CELD problem of finding the optimal 

combination of power generation, which minimizes 

the total fuel cost function of each generator while 

satisfying the total required demand, can be 

mathematically stated as a quadratic function. The 

generators cost curves are represented by quadratic 

functions with sine components. The superimposed 

sine components represent the rippling effects 

produced by the steam admission valve opening. The 

total $/h fuel cost considers the non-smooth valve 

point effects can be modeled as [2-4]:  

𝒎𝒊𝒏 𝑭𝒕 = ∑ 𝒇𝒊(𝑷𝑮𝒊)
𝑵𝑮
𝒊=𝟏 = ∑ (𝒂𝒊 + 𝒃𝒊𝑷𝑮𝒊 +

𝑵𝑮
𝒊=𝟏

𝒄𝒊𝑷𝑮𝒊
𝟐) + |𝒅𝒊 𝒔𝒊𝒏[𝒆𝒊𝑷𝑮𝒊 − 𝑷𝑮𝒊

𝒎𝒊𝒏]|   (3) 

Where, 𝐹𝑡: is the non-linear objective function 

defining the total power generation cost of the 

system. 𝑎𝑖, 𝑏𝑖 and 𝑐𝑖are the coefficients of power 

generation cost function and 𝑑𝑖, and 𝑒𝑖 are the 

coefficients of non-smooth operation of valves.𝑁𝐺 is 

the number of generation buses.The main objective is 

to minimize value of the 𝐹𝑡. 
The second objective aims at minimizing the 

emission effects. The atmospheric pollutants such as 

sulpher oxides and nitrogen oxides caused by fossil 

fueled thermal units can be modeled separately. 

However, for comparison o 

𝒎𝒊𝒏 𝑬𝒕 = ∑ 𝒈𝒊(𝑷𝑮𝒊)
𝑵𝑮
𝒊=𝟏 = ∑ 𝟏𝟎−𝟐(𝜶𝒊 +

𝑵𝑮
𝒊=𝟏

𝜷𝒊𝑷𝑮𝒊 + 𝜸𝒊𝑷𝑮𝒊
𝟐) + |𝜻𝒊 𝒆𝒙𝒑[𝝀𝒊𝑷𝑮𝒊]| (4) 

Where, αi, βi, γi, ξi and λi are the coefficients of 

power generation emissions. The previous objective 

functions are subjected to the following constraints: 

As the generators real and reactive power outputs 

should be equal to the total load demand and 

transmission line losses, this constraint can be 

expressed as: 

∑ 𝑃𝐺𝑖
𝑁𝐵
𝑖=1 = ∑ 𝑃𝐷𝑗 + 𝑃𝐿𝑜𝑠𝑠

𝑁𝐿
𝑗=1   (5) 

Where, 𝑃𝐺𝑖is the power generation at bus 𝑖, 𝑃𝐷𝑗 is the 

load demand at load bus 𝑗, 𝑁𝐿 is the number of load 

buses and PLoss  is the total power losses in the 

system.  

The generation hard constraints include generator 

voltages, real power outputs, these constraints are 

defined as hard constraints as they are restricted by 

their physical lower and upper limits. The generation 

constraints can be simulated as:   

𝑃𝐺𝑖 𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖 𝑚𝑎𝑥
𝑄𝐺𝑖 𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖 𝑚𝑎𝑥
𝑉𝑖 𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖 𝑚𝑎𝑥

   (6) 

where𝑃𝐺𝑖 min: minimum power generated, and 

𝑃𝐺𝑖 max: maximum power generated. 

A mathematical formulation of the security CELD 

problem would require a very large number of 

constraints to be considered. However, for typical 

systems the large proportion of lines has a rather 

small possibility of becoming overloaded. The CELD 

problem should consider only the small proportion of 

lines in violation, or near violation of their respective 

security limits which are identified as the critical 

lines. We consider only the critical lines that are 

binding in the optimal solution. The line flow of the 

j
th

 line is expressed in terms of the control 

variables𝑃𝐺𝑖 , by utilizing the generalized generation 

distribution factors (GGDF) [24] and is given below. 

1

( ) ( )
n

j G ji Gi

i

T P D P


    (7) 

Where, Dji is the generalized GGDF for line j, due to 

generator i and Tj (PG) is the real power flow. 

Using Eq. (7), the power system operator is allowed 

to ramp the power generation and transmission lines 

constraints corresponding to the amount of reserve 

that is able to prepare sufficient preventive control 

actions as [7, 23 ]. For secure operation, the 

transmission line loading Sl is restricted by its upper 

limit as: 

𝑺𝒍 ≤ 𝑺𝒍 𝒎𝒂𝒙, 𝒍 = 𝟏, 𝟐, … , 𝒏𝑳  (8) 

Where nL is the number of transmission line. 

3.1. Ramp rate limit Constraints 

The power generated by the generator 𝑖 in certain 

interval may not exceed that of previous interval by 
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more than a certain amount, (the up-ramp limit) and 

neither may it be less than that of the previous 

interval by more than some amount, (the down-ramp 

limit of the generator). Additional generation hard 

constraints are restricted by their physical ramp rate 

limits. The ramp rate constraints can be simulated as:   

𝐷𝑅𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 − 𝑃𝐺𝑖

(0) ≤ 𝑈𝑅𝐺𝑖
𝑚𝑎𝑥  (9) 

Where, 𝑈𝑅𝐺𝑖
𝑚𝑎𝑥  and 𝐷𝑅𝐺𝑖

𝑚𝑖𝑛  are the maximum and 

minimum of ramp rate for power generation at bus 𝑖 

respectively and 𝑃𝐺𝑖
(0) is the initial value. These 

rates are considered around 10 % around the initial 

generation outputs(𝑃𝐺𝑖).   
 

4. PROPOSED MULTI-OBJECTIVE DYNAMIC 

RANDOM NEIGHBORHOOD PSO (DRN-

PSO) 

a) Proposed algorithm 

The proposed algorithm DRN-PSO has many 

features incorporated to the simple PSO that make 

the algorithm not getting stuck in local optima, 

converges faster, and be able to cover all the search 

space. Traditionally, PSO takes certain 

predetermined particles as the neighbors. The number 

of neighbors or the size of the neighborhood will 

affect the convergence speed of the algorithm. DRN-

PSO presents new form of dynamic random 

neighborhood which enables each particle to change 

its neighborhood during searching for the optimal 

solution. This feature helps in increasing the swarm 

diversity. When using DRN-PSO, it is possible for 

the magnitude of the velocities to become very large. 

In addition to enforcing search-space boundaries 

after updating a particle's position, it is also 

customary to impose limitations on the distance a 

particle can move in a single step. This is done by 

bounding a particle's velocity �⃗�to the full dynamic 

range of the search-space, so the particle can at most 

move from one search-space boundary to the other in 

one step.  

Performance can suffer if 𝑉𝑚𝑎𝑥 is inappropriately 

set. Particles’ velocities are clamped to a maximum 

velocity𝑉𝑚𝑎𝑥, which serves as a constraint to 

control the global exploration ability of particle 

swarm this paper control the growth of velocities by 

a dynamically adjusted inertia factor. Initially the 

values of the velocity vectors are randomly generated 

with the range, [𝑉𝑚𝑖𝑛 𝑉𝑚𝑎𝑥] where Vmax is the 

maximum value of velocity that can be assigned to 

any particle and 𝑉𝑚𝑖𝑛 =  −𝑉𝑚𝑎𝑥. The proposed 

algorithm is detailed as:    

 

Step  1: Load System Data 

Load IEEE 30 bus system data; Fuel cost parameters 

(𝒂, 𝒃, 𝒄, 𝒅, 𝒆) for each generator, generator power 

limits, generator emission coefficients (𝜶, 𝜷, 𝜸, 𝜻, 𝝀), 

and power flow coefficient  

Step  2: Setting Initial Swarm 

Number of particles; 𝑵𝒐. 𝒐𝒇 𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆𝒔 = 20 

Number of neighbors: 𝑵𝒐𝑶𝒇𝑵𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒔 = 𝟓 

Number of Dimension: 𝑫𝒊𝒎𝑵𝒖𝒎 = 𝟔 

Number of cycles: 𝑪𝒚𝒄𝑵𝒖𝒎 = 𝟐𝟎 

Maximum Inertia Weight; 𝑤𝑚𝑎𝑥 = 0.9 

Minimum Inertia Weight;𝑤𝑚𝑖𝑛 = 0.4 

𝒑𝒃𝒆𝒔𝒕 the best solution achieved so far by that 

particle. 

𝒈𝒃𝒆𝒔𝒕 The best value obtained so far by any particle 

in the neighborhood of that particle 

Initialize particles with random position (candidate 

solutions) in the range of generator power ranges, 

and Initialize particle with zero velocity   

if < stopping criteria not met > do 

Step  3: Fitness function 

For each individual𝑥 ∈ 𝑁: calculate fitness𝑓(𝑥); (Fuel 

cost and/or emission minimization) 

Step  4: Constraint handling 

If any one of the 𝒑𝒈 is outside the range, i.e. constraint 

violation then punish it, If the power flow in any 

transmission line is exceeded the secure limit then 

punish it, and Check power balance if violated then 

punish it  

Step  5: Update 𝒑𝒃𝒆𝒔𝒕 
For each particle; 

Set 𝑝𝑏𝑒𝑠𝑡 as the best position of particle𝑥; 

𝐼𝑓 𝒇(𝒙) < 𝑓(𝒑𝒃𝒆𝒔𝒕)𝑡ℎ𝑒𝑛 𝒑𝒃𝒆𝒔𝒕 = 𝒙 

Step  6: Update 𝒈𝒃𝒆𝒔𝒕; best neighbor for each particle 

Every particle is assigned randomly a neighborhood 

that is consisted of  𝑵𝒐𝑶𝒇𝑵𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒔 = 𝟓  

particles, after evaluating each particle fitness in 

the neighborhood, the best fitness in the 

neighborhood of each particle is assigned to 𝒈𝒃𝒆𝒔𝒕 
Step  7: Update velocity and position 

For each particle; 

Choose the best value of Inertia Weight; 𝒘 

𝑾 = 𝑾𝒎𝒂𝒙− ((𝑾𝒎𝒂𝒙 −𝑾𝒎𝒊𝒏)/ 𝑪𝒚𝒄𝑵𝒖𝒎) × 𝒊 
For every dimension 

𝑽𝒎𝒂𝒙(: , 𝒋)  =  𝟎. 𝟎𝟎𝟓 ∗  (𝑿𝒎𝒂𝒙(: , 𝒋)  −  𝑿𝒎𝒊𝒏(: , 𝒋)); 
𝑽𝒎𝒊𝒏(: , 𝒋)  =  −𝑽𝒎𝒂𝒙(: , 𝒋); 

𝒗(: , 𝒋)  
=  𝐦𝐢𝐧 (𝐦𝐚𝐱 ((𝑾 ∗ 𝒗(: , 𝒋)  
+ 𝟏. 𝟒 ∗ 𝒓𝒂𝒏𝒅 ∗ (𝒑𝒊(: , 𝒋) − 𝒙(: , 𝒋))⏟                    

𝑷𝒆𝒓𝒔𝒐𝒏𝒂𝒍 𝑰𝒏𝒇𝒍𝒖𝒆𝒏𝒄𝒆

 +  

𝟏. 𝟒 ∗ 𝒓𝒂𝒏𝒅 ∗ (𝒑𝒈(𝒋) − 𝒙(: , 𝒋))⏟                    
𝑺𝒐𝒄𝒊𝒂𝒍 𝑰𝒏𝒇𝒍𝒖𝒆𝒏𝒄𝒆

), 𝑽𝒎𝒊𝒏(: , 𝒋)), 𝑽𝒎𝒂𝒙(: , 𝒋)

; 

End 

𝒙 =  𝒎𝒊𝒏(𝒎𝒂𝒙((𝒙 +  𝒗), 𝑿𝒎𝒊𝒏),𝑿𝒎𝒂𝒙); 
End 

Go to Step 3 

Otherwise 

Print out the generator power along with the considered 

objective function,  

Exit 
 

 

b) Handling of constraints  

The proposed DRN-PSO deals efficiently with 

the inequality constraints. The equality constraints 

are treated as close to inequality constraints as given 

below: 
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∑𝑃𝑔 − ∑𝐿𝑜𝑎𝑑 − 𝐿𝑜𝑠𝑠𝑒𝑠 > 𝜖  (10) 

Where, 𝜖 refers to the convergence degree 

c) Handling of conflicting objectives 

The typical CELD problem can be formulated as a 

bi-criteria optimization model. The two conflicting 

objectives, i.e., fuel cost and pollutants emission, 

should be minimized simultaneously while fulfilling 

certain system constraints. The CELD problem has 

two objective functions fuel cost minimization and 

emission minimization. These two objectives are 

conflicted in nature. The mathematical formulation of 

multiobjective CELD problem minimizes objective 

functions Equations (3) and (4) while satisfying 

system operating constraints.  

The weighted-sum method transforms a set of 

objectives into a single objective by pre-multiplying 

each objective with user-supplied weight.  The 

weight of an objective is usually chosen in proportion 

to the objective’s relative importance to the problem. 

It is likely that each objective function takes different 

magnitude as in the combined economic- 

environmental power dispatch. Therefore, setting up 

an appropriate weight factor depends on the scaling 

of each objective function.  It is the usual practice to 

choose weights such that their sum is equal to one.  

The combined CELD problem can be formulated as 

follows: 

𝑭 = 𝒘𝟏 × 𝑭𝟏(𝑭) + 𝒘𝟐 × 𝑭𝟐(𝑬𝒕)  (11) 

Where, F refers to the combined objective function 

involves fuel cost and emission; w1 and w2 is the 

weighing factors of the two objective functions.  

5 CASE STUDIES 

5.1 Test Systems 

In order to validate and to show the effectiveness of 

the proposed approach for solving the CELD 

problems using a DRN-PSO, the proposed approach 

is tested with the standard IEEE 30 bus test system 

whose single line diagram is shown in Fig. 2 [39]. 

The test system constitutes 41 lines and six 

generators located at buses 25-30. Tables 1 and 2 

show the cost and emission coefficients of the six-

generators studied system with their minimum and 

maximum limits of power, respectively. The upper 

and down ramp rate are considered with± 10 %.  

 
Fig. 2 Single-line diagram of IEEE 30-bus test system [39] 

Table1 Generation limits and cost coefficients 

Generator 
Min 
MW 

Max 
MW 

a 

($/MW2) 

b 

($/MW) 

c 

$ 

d 

$ 

e 

MW-1 

G1 0.05 0.5 10  200 100 32.4 0.047 

G2 0.05 0.6  10 150 120 32.4 0.047 

G3 0.05 1  20 180 40 32.4 0.047 

G4 0.05 1.2  10 100 60 23.4 0.063 

G5 0.05 1  20 180 40 24 0.063 

G6 0.05 0.6  10 150 100 24 0.063 

Table 2 Generator emission coefficients 

Coefficient  G1 G2 G3 G4 G5 G6 

  4.091 2.543 4.258 5.326 4.258 6.131 

  -5.554 -6.047 -5.094 -3.550 -5.094 -5.555 

  6.490 5.638 4.586 3.380 4.586 5.151 

  2.0E-4 5.0E-4 1.0E-6 2.0E-3 1.0E-6 1.0E-5 

  2.857 3.333 8.000 2.000 8.000 6.667 

5.2 Studied cases 

To assess the efficiency of the proposed DRN-PSO, 

it has been applied to CELD problems where the 

objective functions can be either smooth or non-

smooth. The studied cases can be classified under the 

following three categories: 

Case 1: Minimization of the fuel costs only. 

Case 2: Minimization of the emissions only. 

Two additional joint fuel cost and emission 

minimization simultaneously are considered as: 

Case 3: both objectives are optimized simultaneously 

with equal priority. 

Case 4: both objectives are optimized simultaneously 

using weighted sum approach. 

The proposed optimization approaches compared 

with the results obtained with multi-objective 

evolutionary algorithms like non-dominated sorting 

genetic algorithm (NSGA) [40], niched Pareto 

genetic algorithm (NPGA) [40], strength Pareto 

evolutionary algorithm (SPEA) [40], and 

multiobjective fuzzy based on particle swarm 

optimization algorithm [18], Modified Shuffled Frog 

Leaping Algorithm (MSFLA) [41] and an improved 

real coded genetic algorithm (RCGA) [42].    
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5.3 Results & Discussion 

5.3.1 Case 1: Fuel cost minimization  

Table 3 shows the CELD solution solved through the 

proposed DRN-PSO algorithm compared to real 

coded genetic algorithm (RCGA) [42] for Case 1.  

The proposed method gets different load dispatch 

settings for the studied cases. From table 3, the fuel 

cost is 591.1517 $/hr while the pollutant emission is 

0.215 ton/hr. Compared to RCGA, the fuel cost is 

improved with total reduction of 24.3965 $/hr.  Also, 

Table 3 presents the evaluation of the proposed 

algorithm in terms of mean, best and worst values for 

100 runs and the related standard deviation for each 

case using both optimization methods.  Fig. 3 

illustrates the best fuel cost against run number. The 

proposed DRN-PSO algorithm improves the 

convergence characteristics for case 1as can be 

noticed from swarm 10 and 15, Fig. 4. 

Table 3 Best Fuel costs- CELD solution for Case 1 

Variable RCGA [42]  Proposed 

Algorithm DRN-
PSO 

PG1(per unit) 0.1727 0.1764 

PG2(per unit) 0.3966 0.2852 

PG3(per unit) 0.5679 0.4691 

PG4(per unit) 1.1079 0.8981 

PG5(per unit) 0.2194 0.6350 

PG6(per unit) 0.3949 0.3029 

Mean (Fuel cost) $/hr 623.3722 602.2351 

Best (Fuel cost) $/hr 615.5482 591.1517 

Worst (Fuel cost) $/hr 634.9026 619.1436 

Standard-deviation 5.7289 6.0778 

Emission at best fuel costs 

ton/hr 
0.2285 0.215 

 

 
Fig. 3 Best fuel cost against runs number for Case 1 

 
Fig. 4 Swarm 10 against swarm 15 for case 1 

 

 

5.3.2 Case 2: Emission minimization  

Case 2 considers the emission minimization only as a 

single objective. Table 4 shows that the fuel costs are 

increased to 681.87 $/hr while the pollutant emission 

is reduced to the level of 0.1947 ton/hr.  In terms of 

the control variable settings, different security levels 

are obtained, especially from generators 1, 2 and 3. It 

is obvious that the obtained fuel costs for Case 2 

using the proposed DRN-PSO algorithm are 

competitive compared to that obtained using RCGA. 

The convergence characteristics of case 2 are shown 

in Fig.s 5, 6. These Fig.s show the robust 

performance with fast convergence to the optimal 

solution at acceptable levels of standard deviations in 

the range of 0.0052.  

Table 4 Best emission CELD solution for Case 2  

Variables RCGA [42]  Proposed approach 

𝑷𝒈𝟏(per unit) 0.3969 0.3950 

𝑷𝒈𝟐(per unit) 0.4566 0.5331 

𝑷𝒈𝟑(per unit) 0.6015 0.5718 

𝑷𝒈𝟒(per unit) 0.3853 0.4075 

𝑷𝒈𝟓(per unit) 0.5366 0.5671 

𝑷𝒈𝟔(per unit) 0.5064 0.4682 

Mean (Emission) ton/hr 0.2018 0.2026 

Best (Emission) 0.1932 0.1947 

Worst (Emission) 0.2194 0.2247 

Standard-deviation 0.0056 0.0052 

Fuel costs  $/hr 691.3766 681.87 

 
Fig. 5 Best particle in each swarm Case 2 

 
Fig. 6 Best particle against run number for Case 2 

 

 

5.3.3 Comparative studies for single objective 

categories 

Table 5 summarizes the comparison results between 

the proposed DRN-PSO against several optimization 

techniques for cases 1 and 2 of CELD problem. The 

use of the proposed method leads to responsible 

economical solutions of 591.1517 $/hr and 681.87 

$/hr for cases 1 and 2, respectively. The 

corresponding emission levels are 0.215 and 0.1947 

ton/hr. Previous results prove that the use of the 

proposed DRN-PSO algorithm leads to more 

economical compromised solutions compared to 

others at acceptable levels of emissions. 
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Table 5 Comparison of different methods for 

compromised solutions for Cases 1and 2 
 

Case 2 Case 1 Algorithm  

Emission 

(Ton/h) 
Cost ($/h) 

Emissi
on  

(Ton/h) 

Cost ($/h) 

0.1946 633.8300 0.2238 600.3100 NSGA [40] 

0.1943 636.0400 0.2206 600.2200 NPGA [40] 

0.1942 640.4200 0.2241 600.3400 SPEA [40] 

0.1942 638.3577 0.2223 600.1300 FCPSO [18] 

0.1942 638.2425 0.2221 600.1114 MSFLA [41] 

0.1932 648.5301 0.2285 611.6935 RCGA [42] 

0.1947 681.87 0.215 591.1517 
Proposed 
Approach 

5.3.4 Comparative studies for multiobjective 

problem  

5.3.4.1 Case 3: Using equal weighting factors  

Returning back to Eq. (11) and using equal weighting 

factors is a multiobjective case that needs to be 

tested. 

Table 6 shows the compromised solution using the 

proposed multiobjective version of DRN-PSO 

method for case 3. The obtained results are compared 

to other optimization algorithms.  The performance 

of multiobjective version of the proposed DRN-PSO 

model is shown in Fig.s 7-8. It is proven that, the 

proposed method has good convergence 

characteristics with robust solution. 

Table 6 Comparison of different methods for the best 

compromise solution  

Cost($/h) Emission 

(Ton/h) 

Algorithm  

610.3 0.2004 SPEA [40] 

606.03 0.2041 NSGA [40] 

608.90 0.2015 NPGA [40] 

610.0783 0.2006 MSFLA [41] 

578.8774 0.2159 RCGA [42] 

590.3951 0.2680 Proposed approach for Case 3 
 

 
Fig. 7 Best particle against swarm number for case 3 

 
Fig. 8 Final swarm for Case 3 

5.3.4.2 Case 4: Using weighted sum approach for 

different weighting factors 

Table7 shows the compromised CELD solution 

solved by the proposed DRN-PSO compared to 

RCGA for Case 4 using different weighting factors 

(in the range from 10%-90%), respectively. This 

table shows that the best compromise solution is 

588.8579 $/hr at pollutant emission level of 

0.2681 ton/hr. It is proven that: the obtained results 

are competitive compared to those obtained by 

RCGA as shown in Table7. Thus, the proposed 

DRN-PSO method can be considered as an efficient 

promising method to solve non-linear optimization 

problems. The joint solutions of CELD problem for 

Case 4 prove the well distribution solutions which 

are successively obtained using the proposed DRN-

PSO method.  

Table7 Joint CELD solution Case 4 for different weighting 

factors using DRN-PSO compared to RCGA 

Weightin
g factors 

RCGA [42] Proposed DRN-PSO 

𝒘𝟏 𝒘𝟐 Fuel Cost Emission 
Fuel 

Cost 
Emission 

0.9 0.1 589.9724 0.2245 589.5156 0.2681 

0.8 0.2 590.2386 0.2225 591.2503 0.2680 

0.7 0.3 589.6692 0.2160 591.2831 0.2680 

0.6 0.4 590.0404 0.2207 589.7860 0.2680 

0.5 0.5 590.0163 0.2155 588.8579 0.2681 

0.4 0.6 590.9255 0.2147 589.9727 0.2681 

0.3 0.7 592.1758 0.2197 592.0996 0.2681 

0.2 0.8 590.6076 0.2191 593.0636 0.2681 

0.1 0.9 591.0886 0.2226 593.0959 0.2680 

 

6 CONCLUSIONS  

This paper is concerned with nonlinear constrained 

economic dispatch problem to enhance the operation 

of power plants and to help for building up effective 

generating management plans. This paper 

investigated an improved search algorithm based on 

the particle swarm optimization known multi-

objective DRN-PSO for non-smooth constrained 

economic dispatch problems. Experiments were 

conducted on IEEE 30-bus and compared to other 

optimization techniques that reported in the literature. 

The obtained results demonstrate the superiority of 

the proposed DRN-PSO compared to other 

optimization techniques that reported in the literature. 

The proposed algorithm improves the economic issue 

as well as enhancing the power system operation in 



Mostafa A. El-hosseini, Ragab A. El-Sehiemy and Amira Y. H " A MULTIOBJECTIVE DYNAMIC………….." 

Engineering Research Journal, Minoufiya University, Vol. 37, No. 4, October 2014. 387 

the technical point of view at acceptable levels of 

emissions. So, it can be considered as a promising 

alternative algorithm for solving problems in 

practical large scale power systems 
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