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ABSTRACT 

The present work introduces a mathematical model of a cracked pipeline conveying liquid. This model uses 

governing equation of Euler – Bernoulli beam theory for a pipe conveying liquid. The crack introduced in the 

model is represented by two identical torsional springs and a sinusoidal excitation force was applied to one of 

the pipe ends for the purpose of crack detection. The model is solved numerically using MATLAB code bvp4c 

to solve linear, ordinary fourth order differential equations (boundary value problem) for the detection of the 

crack position. To group the variables in the dimensionless form, Buckingham Pi-theorem was used. The 

effects of the dimensionless parameters on crack position were examined. The results show that the value of 

dimensionless parameters of stiffness at crack and support has considerable effect on crack position. It also 

shows that the force amplitude and fluid flow properties has no effect on crack position which demonstrates the 

capacity of using the present technique with small force magnitude to avoid stress-strain problems on the 

pipeline and any excitation frequency can be used. 
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1. Introduction 

In order to eliminate loss of water from pipelines 

many techniques have been proposed. Water 

companies apply many techniques at the water 

distribution systems and this helps to know where the 

cracks are in the network that causes leakage. 

However, these various methods for detection cannot 

give the exact information about the position of the 

crack that causes the leakage in the pipeline. Many 

researches have been carried out on the detection of 

crack position.  

Housner [1] studied the free and forced vibrations 

which are produced from the crosswinds and that 

perhaps cause problems in the pipelines supported 

above ground. The proposed solution based on 

simple beam theory, demonstrated that the flow of 

fluid in the pipeline has negligible effect on the 

vibrations. For free and steady- state forced 

vibrations, it was found that when the value of 

damping is too small, large amplitudes may be 

developed. Long [2] used analytical and experimental 

methods for the studding of the free transverse 

vibrations for the fundamental mode of a single-span 

pipeline containing a flowing fluid. The approximate 

solution used an infinite power series to solve the 

governing differential equation of motion. The results 

show that, a slight decrease in frequency and no 

decaying vibration with an increase in flow rate of 

the flowing fluid for simply supported, fixed, and 

fixed-simple ends. Stein and Tobriner [3] presented 

numerical solution to the governing equation of an 

elastically supported pipe of infinite length carrying 

an ideal fluid under pressure. Furthermore, the effect 

of resulting internal pressure forces is demonstrated. 

The effects of flow velocity, foundation modulus and 

internal pressure on the dynamic stability, also 

frequency response, and wave-propagation 

characteristics of an undamped system are discussed. 

The discussions show that, the stability of the system 

is insured if the flow velocity does not exceed the 

critical value. Weaver [4] studied the dynamic 

stability of a pipeline with a finite-length carrying a 

fluid. The equation of Flügge - Kempner is used with 

classical potential theory in which circumferential 

and usual beam modes may be considered. The 

results show that, cylinders become statically 

unstable at first but flutter is predicted at higher 

velocity. The critical flow velocities for short thin 

shells are associated with circumferential waves. 

Mukherjee and Narasimhan [5] presented a new 

technique for detection the location and size of the 

cracks if single or numerous that happens in a 

pipeline networks. The technique is a combination of 

the generalized likelihood ratio GLR test, which 

utilizes volume rate and pressure measurements and a 

steady- state model of the network. Lee and Chung 

[6] proposed a new non-linear model of a straight 

pipeline carrying fluid and the pipeline is clamped 

from both ends. The governing equations used the 

Euler –Bernoulli beam theory and non –linear 
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Lagrange strain theory, from the extended Hamilton 

principle the coupled non –linear equations of motion 

for the axial and lateral vibrations. The governing 

equations are solved by using Galerkin method. 

Reddy and Wang [7] introduced governing equations 

of fluid-conveying beams using two well-known 

relations; Timoshenko beam theories and Euler – 

Bernoulli. The formulation focus on geometric 

nonlinearity and influence of fluid velocity to the 

kinetic energy and body forces with accordance with 

the Von Karman theory. The model with non-linear 

equations of motion were presented in Finite element 

models. Kupier and Metrikine [8] derived 

theoretically the stability of a clamped-pinned pipe 

conveying fluid at low fluid flow velocity. The model 

is an adaptation of a tensioned Euler –Bernoulli beam 

model and plug flow model. A D-decomposition 

method was used to study the stability of the pipe. 

Langre and Paidoussis [9] studied the stability of a 

thin flexible cylinder and consider it as a beam, when 

subjected to axial flow and clamped at the upstream 

end only. The stability is studied by using a finite 

deference technique to the governing equation of 

motion in the frequency domain.  The linear stability 

analysis of lateral motion is used to study the flutter 

effect as a function of the main variables which 

includes the flow velocity and the cylinder length. 

Jing and Zhi-Hong [10] studied pipeline leakage 
factors, using Grey relational analysis in order to 
analyze the factors and evaluate their degree of 
influence on pipeline leakage. They put forward a 
prediction model for the leakage by means of the 
so called multiple linear regression analysis. 
 Oikonomidis et al [11] developed a model of 

prediction for the propagation of crack in pipelines 

conveying natural gas using a strain rate dependent 

damage model. The model was adjusted for specific 

strain rates. Their model was validated by 

experimental analysis on notched pipe. Zhang et al 

[12] initiated a prediction code for the leakage from 

pipeline crack. The model was applied on high and 

low temperature of single and two phase fluid flow. 

The model was based on the Henry-Fauske critical 

flow model and was justified by experimental results 

of a straight pipe crack. Wang et al [13] studied the 

emission signal of pipeline crack acoustics. Using a 

Nielsen-Hsu pencil break method he simulated the 

fault detection of pipe crack. The precision of 

position accuracy had an error less than 5%. 

Kirubakaran and Krishna [14] on the other hand used 

image analysis for pattern recognition of pipeline 

crack. The analysis was used to develop a 

mathematical morphological operator for the 

detection of cracks edge. Mohamed et al [15] 
investigated the damage to the pipe caused by 
crack and erosion corrosion. They found in their 

analytical analysis, that the solution to the 
equations for the two cases showed satisfactory 
agreement with the experimental analysis where 
the variation of vibrating sensitivity of the 
measuring sensor detects the presence of defects. 
They also showed that the vibration of the 
simply supported pipe in the crack and erosion 
corrosion cases decreases and increases, 
respectively. Razvarz et al [16] proposed a new 

technique for the detection of fluid leaks in pipelines 

through the evaluation of fluid flow and pressure at 

the pipe ends.  He used a technique based on data 

combination from steady-state approximation and 

SEKF second order MATLAB code filter. Finally, Lu 

et al [17] presented an interesting survey on the novel 

detection methods used for oil and gas pipelines 

leakage. His review includes the advantages and 

limitations of each technique with their appropriate 

technological tools. 

The objective of this paper is to determine the 

location of crack in a pipeline conveying liquid using 

mechanical vibration. In order to accomplish this 

mathematical model was developed to simulate a 

cracked pipe and the crack is modeled by two 

torsional springs. A MATLAB program was 

constructed in order to solve the governing equation 

of motion simulating the vibrating pipe. Different 

parameters in their dimensionless forms affecting the 

crack position are studied. And by the aid of the 

Buckingham theorem the basic variables of the model 

are identified. 

 

2. Governing Equations and Mathematical 

Modeling  

 For the derivation of the governing equation, 

consider a uniform cross section straight pipe 

conveying fluid of length    modulus of elasticity E, 

cross-section area A and second moment of area I as 

shown in Figure (1). The fluid in the pipe is at a 

constant pressure P, density , and constant velocity 

U. Let us consider a small element of the pipe with 

length x. This element is divided into two parts, 

fluid element and pipe element. An external force 

f(x,t) is applied on the pipe at a distance x leading to 

a vertical deformation w(x,t). Forces distribution on 

fluid element and pipe element are as shown in 

Figure (2). 

 

 

Figure 1- Cracked pipe conveying fluid. 
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   (a) Fluid element  (b) Pipe element 

Figure 2- Forces distribution on Fluid element and 

Pipe element 
 

The equilibrium of the forces in the   and   directions 

on the fluid element and pipe element gives,  
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Where mf is the mass of fluid element per unit 
length of the pipe, F is the fluid force per unit 
length applied to the fluid element by the tube. 𝑆 is 

the inner perimeter of the pipe, q is the shear stress 

on the internal surface of the pipe and A is the pipe 

cross-section area.  
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represents the inertia force exerted by internal plug 

flow on the pipe.  

The equations of motion of the pipe element derived 

in the x and y directions are: 
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 (𝜕 𝜕) is the external applied force per unit length, Q 

is the transverse shear force in the pipe, T is the 

longitudinal tension in the pipe and mp is the mass per 

unit length of the empty pipe. 

The bending moment M in the pipe, the transverse 

shear force Q and the pipe deformation are related by, 
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Where E is the modulus of elasticity of the pipe 

material and I is the second moment of area of the 

pipe section. 

Combining all the equations above and eliminating Q, 

q and F yields: 
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The fluid pressure causes internal force on the pipe 

wall. It is possible to change the true longitudinal 

force due to fixed support in the model (see figure 

(1)) into a so–called effective tension 𝜕 𝑓𝑓. 

Where, 
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Substituting into equation (7) with the following 

substitution suitable for harmonic oscillation: 
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Equation of motion (8) can be made dimensionless by 

introducing the following variables: 
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Where the primes denote differentiation w. r. t. 𝜕   

Introducing the following dimensionless parameters:  
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The boundary conditions at the left and the right hand 

supports of the pipe are, 
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     is the spring stiffness at the right support. 
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    is the spring stiffness at the crack and 𝜕 
   is the 

dimensionless distance from the left support of the 

pipe to the crack. 

The boundary conditions at point D (crack) are: 
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3. Numerical Results and Discussions 

To predict a crack location in a pipe conveying liquid 

a technique is developed based on an external exciter 

to give the pipe a forced frequency placed nearly at 

any end of the pipe. This excitation force can be 

represented as follows: 

 (𝜕)  *𝜕 (  
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When the exciter is at the left support of the pipe (the 

blue line in figure 3) 

 (𝜕)  *(  𝜕) (  
 
 
)       +     ⁄

 

When the exciter is at the right support of the pipe 

(the red dotted line in figure 3) 

Where      is the maximum value attained by the 

function (𝜕). The constant      is taken to make 

the exciting force as sharp as possible and the 

vanishingly small constant       in the force 

equation was put to provide continuity of the exciting 

signal over the whole span of the pipe as shown in 

figure (3). 

The Algorithm used considers the cracked pipe as 

two segments each has its boundary conditions. The 

MATLAB code bvp4c was used to solve the present 

linear ordinary fourth order differential equations 

(boundary value problem). The effect of the main 

dimensionless parameters of the model    ,    ,    

,   ,    ,  , on the crack position    
 

 were examined, 

and found to have in general no sensible effect on 

crack position, so there is a need to group the basic 

variables of the governing equations into new groups 

to examine their mutual effect on the crack position . 

For this purpose, Dimensional analysis using 

Buckingham Pi theorem is to be used. 

 

Figure 3- Shape of the excitation force 

 

3.1 Dimensional Analysis using Buckingham Pi 

theorem. 

Many steps will have to be done to eliminate the 

variables in the problem, and the next tables represent 

the primary dimensions of the system, Table (1) 

shows the system parameters and primary 

dimensions. The developed dimensionless new ten 

parameters (Pi –groups) are shown in Table (2). 

 

Table 1- System parameters primary dimensions 

 

Table 2- Pi's expressions 
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3.2 Parameters evaluation 

Figures (4, 5, 6, and 7) show the effect of the initial 

tension parameter (𝜕 𝑓𝑓    
 𝜕 ⁄ ) , flow parameter   

(𝑚𝑓    
 ⁄ ) , Strouhal number or (frequency 

parameter) 𝑆 , and excitation force parameter 

(𝐹    𝜕
 ⁄ )  on crack position (𝜕  ⁄ )  respectively. 

According to the graphs there is no effect for the 

parameters on crack position prediction. The 

predicted crack position was 0.91 when the values of 

the parameters were as follows: Initial tension 

parameter =0.4, flow parameter =1(10
4
), Strouhal 

number or (frequency) parameter=65, excitation 

force parameter = 0.0001, elasticity parameter 

=2(10
6
), second moment of area parameter = 0.05, 

diameter parameter = 0.02, crack stiffness parameter 

= 0.0003, support stiffness parameter = 0.0004.  

The predicted crack position was 0.55 when the 

values of the parameters were as follows:   

Initial tension parameter = 0.4, flow 

parameter = 1(10
4
), Strouhal number or (frequency) 

parameter = 65, excitation force parameter = 0.0001, 

elasticity parameter =2(10
6
), second moment of area 

parameter = 0.05, diameter parameter = 0.02, crack 

stiffness parameter = 2.5, support stiffness parameter 

= 0.4. For     the results mean that in practical 

applications, the exciter can apply a force to the pipe 

with any frequency to predict the crack position. 

It can easily be inferred from the figures that these 

four parameters do not have any effect on the 

predicted location of the crack. In fact, several trials 

have been carried out for different values of the four 

parameters in order to examine their mutual effects 

on the crack location. The procedure was repeated 

while keeping the rest of the parameters constant. It 

was found after a process of elimination that the most 

influential parameters are the crack stiffness 

parameter (      
 𝜕 ⁄ )  and the support stiffness 

parameter (      
 𝜕 ⁄ ) . It is quite clear from 

Figures 4, 5, 6 and 7 that the predicted position of 

crack changes only when changing those parameters. 

Two numerical examples are chosen to be plotted on 

these figures giving a predicted crack position of 0.91 

for relatively small values of (      
 𝜕 ⁄ )  

       and (      
 𝜕 ⁄ )         and a position 

of 0.55 for relatively large values of (      
 𝜕 ⁄ )  

    and (      
 𝜕 ⁄ )     . The numerical 

examples shown in the four figures are for values of 

(   ⁄ )      , (𝐼   
 ⁄ )       and (𝐸   𝜕

 ⁄ )  

 (   ). On the other hand, it is clear from Figures (8, 

9) that the effect of  (𝐼   
 ⁄ ) and (𝐸   𝜕

 ⁄ )  on the 

crack position (𝜕  ⁄ ) is quite small. The values of 

the second moment of area parameter were taken 

from 0.01 to 0.5 and the predicted position of the 

crack is seen to vary approximately from 0.98 to 0.9. 

The values of the elasticity parameter were taken 

from 0.1(10
6
) to 2.5(10

6
) and the predicted position 

of the crack varied from approximately 0.91 to 0.98. 

  
 

Figure 4- Effect of     

   
   

  on (
  

 
) 

          

Figure 5- Effect of   

   
 
  on   

 
 

 
 

Figure 6-  Effect of 𝑆  on (
  

 
) 
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Figure 7-  Effect of (
 

    
 )

  on (
  

 
) 

 

Figure 8- Effect of (
 

  
 )  on  (

  

 )
 

 

Figure 9- Effect of (
 

   
 ) on (

  

 )
 

Figures (10, 11, 12) show the effect of diameter 

parameter  (   ⁄ ) , crack stiffness parameter 

(      
 𝜕 ⁄ ) , and support stiffness parameter 

(      
 𝜕 ⁄ ) on crack position (𝜕  ⁄ ) respectively. 

It can be clearly seen that there is a considerable 

effect of these parameters on the crack position. For 

(   ⁄ ) parameter and according to figure (10) as the 

values of the parameter increase the technique 

sensitivity for the crack position prediction increases. 

The values of the parameter were taken from 0.15 to 

0.5 and the predicted position of the crack was 0.95 

to 0.6 approximately. And for (      
 𝜕 ⁄ ) , 

(      
 ⁄ 𝜕 ) parameters, when the stiffness of the 

crack and the support increase the crack position 

moves close to the middle of the pipe. This means 

that as the position goes close to the middle of the 

pipe, the stiffness of the crack and support attain 

larger values indicating that the crack size is smaller. 

When the values of the stiffness of crack and support 

are small, the position moves away from the middle 

of the pipe meaning that the size of crack is larger. 

The values of the crack stiffness parameter were 

taken from 1 to 3.75 and the predicted position of the 

crack was from 0.97 to 0.6 respectively. The values 

of the support stiffness parameter were taken from 

0.2 to 0.55 and the predicted position of the crack 

was from 0.95 to 0.5 respectively. 

 

  Figure 10- Effect of  (
  

 )
 on (

  

 )
 

                      

Figure 11- Effect of (
   

   
   ) on (

  

 )
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Figure 12-  Effect of (
   

   
   ) on (

  

 ) 

 

 

 

4. Conclusions   
The present technique introduced a simple method 

for detecting the crack position in a pipeline with 

respect to other techniques in this field. The 

technique can be applied to any pipeline with any 

supports. It also shows that the force amplitude and 

fluid flow properties have no effect on crack position 

which demonstrates the capacity of using the present 

technique with small force magnitude to avoid stress-

strain problems on the pipeline and any excitation 

frequency can be used. The results show that,     

 There are three dimensionless parameters that have 

considerable effect on the crack position, namely 

the inner diameter to length parameter, crack 

stiffness and support stiffness parameters. 

 Strouhal number (frequency number) has no 

sensible effect on crack position prediction, and this 

result is of advantage to the technique, so there is 

no restriction on using any frequency without 

causing any problems to the piping system.  

 Crack position prediction depends very much on 

the type of support. 

 Force amplitude has no effect on crack position 

prediction, and that result is of advantage for the 

technique, so using small force magnitude is 

preferable to avoid any problems that may appear to 

the pipeline. 

 Fluid flow properties have limited effect on crack 

position prediction. 
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Nomenclature 

𝐴  Internal Cross-section area of the pipe, (m
2
) 

   Outer diameter of the pipe, (m)  

    Inner diameter of the pipe, (m)     

𝐸   Modulus of elasticity of the pipe metal, 

 (N / m
2
)  

𝐹   Fluid pressure force per unit length applied 

on the fluid element by the tube, (N  /m)  

𝐹 (𝜕 )   Dimensionless exciting force parameter, 

𝐹 (𝜕 )  
 ( )

         
  

 (𝜕 𝜕)    External force per unit, (N / m)   

𝐼  Second   moment of the area of the pipe 

cross–section, (𝑚 ) 

     Dimensionless stiffness parameter at crack,  

  =
       

   
 

    Dimensionless stiffness parameter at right 

hand hinged supported,    =
      

   
 

     Stiffness of rotational spring at crack, 

 (N.m /rad)       

     Stiffness of rotational spring right hand 

supported, (N.m / rad)       

   Length of pipe, (𝑚) 

𝜕         The moment at the right hand support of the 

pipe, (N.m) 

𝑚𝑓   Fluid mass per unit length, (kg / m) 

𝑚   Pipe mass per unit length, (kg / m) 

𝑚   Total mass of pipe and fluid per unit length,

 (kg / m) 

𝜕    Fluid flow pressure inside the pipe, (N / m
2
) 

   Transverse shear force in the pipe, (N / m
2
) 

𝑞 Shear stress on the internal surface of the 

pipe, (N / m
2
) 

   Dimensionless mass parameter,   
  

  
 

𝑆 Inner perimeter of the pipe, (m) 

𝜕  Longitudinal tension in the, (N) 

𝜕 𝑓𝑓   Effective tension in the pipe, (N)  

𝜕 Time, (s) 

𝜕  Velocity of the fluid in x direction, (m/s)  

𝜕  Transverse deformation of the pipe, (m) 

𝜕  Axial coordinate, (m) 

   Transverse coordinate, (m)     

𝑆  Strouhal number, 𝑆  
   

 
 

  Dimensionless velocity parameter, 

   
     

    

   
 

  Dimensionless axial force parameter,       

  
      

   
 

 𝜕  Small element in x direction, (m) 

    External Forced Frequency, (rad / s)   

     Density of the fluid, (kg / m
3
)  

    Density of pipe material, (kg / m
3
) 

 

 
 
 
 


