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ABSTRACT 

Vibration is one of the major parameters to consider in condition monitoring of rotating systems. If an 

undetected fault is noticed in the rotating system, then, at best, the issue will not be too significant and can be 

remedied cheaply and quickly; at worst case, it may result in down-time, expensive damage, injury, or even 

life loss, therefore early fault identification is a critical factor in ensuring and extending the working life of 

the rotating systems. By measurement and analysis of the vibration of rotating machinery, it is possible to 

detect and locate important faults such as mass unbalance, misalignment, bearing failure, gear faults and rotor 

cracks. This article is aimed to guide the researchers to implement identification, diagnosis and remedy 

techniques of common fault types using vibration analysis and outlines many important techniques used for 

condition monitoring of rotating systems such as fast Fourier transform, frequency domain decomposition 

method, wavelet transform, stochastic subspace identification and deep learning.  
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1. Introduction 

The necessity of using small and large rotating 

machinery in industrial systems imposes monitoring, 

maintenance, and reparation. The main function of 

condition monitoring of rotating machines is to 

provide knowledge about machines condition at each 

moment without stopping the line of production.  

Vibration monitoring is one of the most common 

techniques of condition monitoring and this is for its 

ability to detect, locate and distinguish different types 

of faults since its inception before they become 

critical and dangerous, these faults which may be 

distributed or localized. The bearings are the most 

essential mechanical elements of rotating machinery. 

They are employed to support the rotating shafts in 

rotating machinery. On the other hand, several 

studies showed that the main source of most 

mechanical faults in rotating machinery is the bearing 

fault. Therefore, any bearings fault may influence the 

level of production and equipment working life as 

well as having an unsafe environment for workers. 

For these reasons, condition monitoring, early fault 

detection and fault diagnosis of these bearings is one 

of the major fundamental axes of development and 

industrial researcht 

There are many techniques that can be used to detect 

and diagnosis the bearing faults such as Fast Fourier 

Transform (FFT), Short Time Fourier Transform 

(STFT), Envelope analysis (EA), Empirical Mode 

Decomposition (EMD), Frequency Domain 

Decomposition method (FDD), Enhanced Frequency 

Domain Decomposition method (EFDD), Frequency-

Spatial Domain Decomposition method (FSDD), 

Wavelet Transform (WT), Stochastic Subspace 

Identification (SSI), Artificial Neural-Network 

approach for fault detection (ANN), Adaptive Neuro-

Fuzzy Inference System (ANFIS) and Deep Learning 

for Fault Diagnosis. The purpose of this article is to 

review these techniques and explore their 

capabilities, advantages, and drawbacks in 

monitoring bearings. 

 

2. Fault in Rotating Machines 

Turbomachinery, or generally speaking rotating 

systems, are used in almost all industry sectors and 

plays a major role t 

Rotating machines can create propulsion (propellers), 

extract energy (turbines), convoy fluids (fans and 

pumps) and convert the state of working fluids 

(compressors or pumps). In such cases, performance, 

reliability, efficiency, and rapid delivery are 

important factors that must be achievedt 

Each rotating system type has one or more key design 

challenges. In gas turbines, high temperatures is a 

problematic, so cooling is a challenge. In aeroengine 

fans, there are space limitations in designing 

automotive fans, so noise is a challenge. In pumps, 

non-ideal gas attitude in refrigerant compressors and 
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steam turbines must be considered, so cavitation is a 

challenget 

A fault is an irregularity in the functioning of the 

equipment which results in component damage, 

energy losses and reduced efficiency of the machine t 

Common types of machine faults are mass unbalance, 

misalignment, bearing failure, gear faults, rotor 

cracks and bent shafts. The relation of the 

predominant vibration frequencies with the forcing 

frequency (input force frequency) gives us an idea 

about the source of the fault. The increased amplitude 

of the predominant frequencies indicates the severity 

of the fault. Standard relations between common 

faults and corresponding fault signatures are 

available [1, 2]. 
 

2.1 Rotor Unbalance 

Unbalance always appears in the form of noticeable 

vibrations which endangers people, machines, and 

the environment when it exceeds permissible 

tolerances [3]. It shortens the service life of 

machinery and reduces their utility value.  In 

practice, there’s no perfectly balanced rotors because 

of manufacturing errors, tolerances and rotor 

geometric changes during operation in the field [4]. 

This requires the rotor to be balanced usually by 

adding or removing correction masses at certain 

positions. 

Edwards et al. [5] detected unbalance experimentally 

from data obtained from just a single run-up or run-

down of the rotor rig and attempted to balance the 

rotor. Janik and Irretier [6] proposed a method for the 

unbalance identification of elastic rotors based on the 

rotor dynamic theory mutual with experimental 

modal analysis. Park et al. [7] used an on-line 

weighted-incremental least square method and 

conducted experiments to detect mass unbalance  and 

high order sensor runout in a turbo molecular pump 

having active magnetic bearings. Tiwari and 

Chakravarthy [8] used impulse response 

measurements for  calculating residual mass 

unbalances and bearing dynamic characteristics and 

validated the developed method experimentally in a 

flexible rotor-bearing test-rig. DE Queiroz [9] 

simulated identification of rotor unbalance 

parameters using the resulting disturbance 

calculations. 

Various balancing techniques includes influence 

coefficient methods [10, 11], modal balancing [12, 

13], unified balancing approach [14], balancing using 

amplitude only [15-17], balancing using phase only 

[18], automatic balancing of rigid rotors [19, 20] and 

virtual Balancing [21, 22]. 

 

 

 

2.2 Misalignment 

Misalignment can be the second most common fault 

after unbalance. Misalignment can cause over 70% of 

the vibration issues of rotating machinery [23]. 

Misalignment exists because of improper machine 

assembly, thermal distortion, and asymmetry in the 

applied load. Misalignment in rotating machinery 

results reaction forces and moments acting on the 

coupling which cases vibration in the rotating system. 

Practically we cannot achieve perfectly balanced 

aligned rotor system. However, it can be within an 

acceptable level. [24, 25]. 

Sinha et al. [26] studied misalignment from a single 

run of flexible rotating system, while Taradai and 

Don [27] developed a combined experimental and 

computational method to estimate the shaft alignment 

without couplings disassembly. Bachschmid and 

Pennacchi [28], Sekhar [29, 30] has successfully 

identified coupling misalignment by using model-

based methods. Pennacchi and Vania [31] identified 

misalignment through orbit shape analysis and 

subsequently used model-based method for the fault 

identification. Some recent works include failure of 

the misaligned flexible rotor was studied by Hili et al. 

[32], and while on-line prediction of motor shaft 

misalignment was investigated by Omitaomu et al. 

[33] using FFT generated spectra data and support 

vector regression. Patel and Darpe [34] proposed a 

method for using the full spectra to identify 

misalignment fault in rotor systems. And later, in 

[35] they made experimental investigations in a 

laboratory test rig and found that the misalignment 

causes coupling phenomenon in the axial, bending, 

and torsional vibrations.  

They identified coupling misalignment fault using 

full spectra and orbit plots of the vibration response. 

The study of shaft misalignment is still inadequate. 

Few researchers have given attention to shaft 

misalignment due to complexity in modeling. Also, 

most of the past studies on misalignment were 

theoretical [36-38]. experimental investigations were 

relatively limited. Furthermore, the theoretical studies 

often attempted with several assumptions and 

simplifications [39-41]. 

 

2.3 Bearing Failure 

Bearings are the most critical components of any 

rotating system. They are used to support the rotating 

shafts in rotating machinery. Thus, any fault or 

malfunction in the bearings can result losses on the 

production level and equipment as well as having 

unsafe working environment for humans [42]. 

Therefore, the fault diagnosis of bearings has got 

large attention from the researchers in the recent 

years [43-45]. Time domain analysis [46], frequency 
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domain analysis [47] and spike energy analysis [48] 

are applied to detect different bearing faults.  

 

2.4 Damaged Gears 

Gear vibrations are mainly produced by the shock 

between the teeth of the two meshed gears. The 

vibration monitored on a faulty gear generally 

exhibits a significant level of vibration at the tooth 

meshing frequency [49-53]. 

Gear faults can be generally classified into two major 

categories: distributed faults and local faults [54]. 

Distributed faults are those faults that results from 

poor gear mounting, or manufacturing inaccuracies 

such as eccentricities, varying gear tooth spacing, etc. 

Meanwhile, local faults are those resulting from 

localizing defects that may occur in gear teeth such as 

tooth surface wear, cracks in gear teeth, and loss of 

part of the tooth due to breakage or loss of the whole 

teeth. 

 

2.5 Cracked Rotor 

Undetected cracks in a shaft can lead to catastrophic 

failure in the rotating system. This problem may be 

monitored by observing the vibration signature and 

behavior of cracked rotor systems [55].  

Generally, there are two different methods are 

employed to detect and locate cracks in rotating 

systems. The first approach is depends on the 

exitance of a cracked shaft in a rotating system which 

results in decreasing the structure stiffness [56, 57]. 

Therefore, decreasing the natural frequencies of the 

original uncracked shaft. The second approach 

considers the effectiveness of a transverse active 

crack on the response of a rotor system [58, 59]. 

 

2.6 Bent Shafts 

Bends in shafts may be caused in several ways, for 

example due to creep, thermal distortion, or a large 

residual unbalance force. The forcing caused by a 

bend is similar, though slightly different to that 

caused by conventional mass unbalance. The 

response of shaft bow is a function of shaft rotating 

speed and results different phase angle and amplitude 

relationships than is measured with mass unbalance, 

which is a function of the square of the rotating 

speed. It is important to be able to diagnose shaft bow 

from vibration measurements and Thus, distinguish 

between it and mass unbalance. 

Parkinson et al. [60] described the differences in 

whirl resulting from a rotating shaft subjected to shaft 

bow and mass unbalance. After shaft balancing, it’s 

found that the net whirl showed conventional 

resonance behavior considering amplitude and phase 

angle. Experimental results were included, which 

confirmed the above findings and showed the 

balancing of net whirl to be an extremely effective 

method of balancing a bent shaft. 

 

3. Vibration Analysis Techniques for Fault 

Detection 

3.1 Fast Fourier Transform (FFT) 

Frequency analysis is considered to be the most 

traditional method which can be employed for 

analyzing the vibration signals [61-63]. Fourier 

analysis transforms a signal from its original domain 

(usually space or time) into frequency domain and 

vice versa. Results showed that it is difficult to detect 

and identify the fault at bearings using FFT [64], 

because of limitations of the spectral analysis found 

in the non-stationary signal analysis. 

 

3.2 Short Time Fourier Transform (STFT) 

Short-Time Fourier Transform (STFT) is the most 

widely used technique for time frequency (TF) 

analysis of non-stationary signals. The aim of STFT 

is to analyze the signal into segment by segment (or 

window by window) [65]. It uses a window function 

to slide on the signal studied and then divide it into 

several equal length segments (or window).  The 

inside signal of the segments is supposed to be 

stationary.  After that Fourier transform is applied in 

each segment to find out the frequencies contained in 

that segment. Hence, the signal will be represented 

by two elements of time and frequency [66, 67]. 

 

3.3 Envelope Analysis (EA) 

The envelope analysis is an important signal 

processing technique which is applied to extract the 

defect features from modulation signals.  

The  envelope  analysis  can  be  divided  into  three 

procedures:  signal  filtering,  applying  Hilbert  

transform  (HT) [68] to envelope  extraction  of  the  

filtered signal,  and at last,  the spectrum estimation 

of the envelope by the applying the Fast Fourier 

transform (FFT) [69-71]. The identification of the 

bearing faults is possible by using envelope analysis.  

However, a critical limitation of this approach is that 

it needs a pre-knowledge of the filtering band and 

frequency at resonance. 

 

3.4 Empirical Mode Decomposition (EMD) 

Empirical Mode Decomposition (EMD) is an 

adaptive time-frequency technique for analyzing non-

stationary and nonlinear signals, which applies time 

domain signals and divides it into a group of 

oscillatory functions, called intrinsic mode functions 

(IMF) [72]. EMD is a superb technique used for 

bearing fault diagnosis [73-75]. Unfortunately, there 

are two problems in EMD, which are the selection of 

the suitable decomposition level and its intrinsic 
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mode functions (IMF) which contains the necessary 

information for faults diagnosis. 

 

3.5 Frequency Domain Decomposition Method 

(FDD) 

Frequency Domain Decomposition (FDD) is a non-

Bayesian approach for operational modal analysis of 

rotating systems [76]. Applying FDD in the 

frequency domain, it gives the natural frequencies, 

the associated mode shapes and damping coefficients 

as output, given a sufficient number of measurement 

channels as input [77-79]. The most important 

requirements of the method are the following: 

The equations of motion of the structure are linear.  

The structure is lightly damped, e.g., modal damping 

coefficients do not exceed 10%–15%.  

The external load on the structure, though unknown, 

can be regarded as a white noise over the frequency 

range of interest.  

 

3.6 Enhanced Frequency Domain Decomposition 

method (EFDD) 

Enhanced Frequency Domain Decomposition method 

(EFDD) approach is an expansion of FDD approach 

described earlier. In this approach, modes are simply 

selected locating the peaks in singular value 

decomposition plots calculated from the spectral 

density spectra of the responses [80]. As FDD 

approach is based on using a single frequency line 

from the Fast Fourier Transform (FFT) analysis, the 

accuracy of the evaluated natural frequency depends 

on the FFT resolution, and no modal damping is 

determined. However, EFDD gives an improved 

calculation of both the mode shapes and the natural 

frequencies including damping calculation [81]. 

 

3.7 Frequency-Spatial Domain Decomposition 

Method (FSDD) 

The spatial and frequency domain decomposition 

(FSDD) method was introduced in 2005, in which the 

damping ratios and modal frequencies are calculated 

from the enhanced power spectrum density (PSD) 

[82] directly, without the necessity to perform inverse 

fast Fourier transform (IFFT). FSDD greatly 

improves the performance of FDD type algorithms 

and has been widely applied in various engineering 

fields [83-85]. However, problems like being unable 

to differentiate between repeated modes, presence of 

computational modes, and even less capacity of 

calculating damping ratios are still big obstacles 

encountered in many applications of these kind of 

methods.  

3.8 Wavelet Transform (WT) 

A wavelet is defined as a small wave (the sinusoids 

used in Fourier analysis are big waves) and in brief, a 

wavelet is an oscillation that decays quickly [86-88]. 

The wavelet analysis is done like the short-time 

Fourier transform analysis. In STFT, the signal is 

multiplied with a window function; and wavelet 

transform follows a similar process to study the 

signal but with multiplying with a wavelet function, 

and then the signal is estimated for each result 

segment. However, unlike STFT, in Wavelet 

transform, with each spectral component results in 

changing the wavelet function width [89-91]. 

Advantages of Wavelet Theory can be summarized 

as:  

Wavelets offer localization in frequency and time 

domain simultaneously. 

A wavelet transform can be used to decompose a 

signal into multiple wavelets. 

Wavelets can often compress or de-noise a signal 

without appreciable degradation.  

 

3.9 Stochastic Subspace Identification (SSI) 

SSI technique works directly with time data, without 

needing to convert them to correlations or spectra; 

also, SSI is an output-only time domain technique.  

This technique is applied especially in operational 

modal parameter identification [82], but it is a 

difficult technique to clarify in detail for civil 

engineers. The model of vibration structures can be 

defined by a set of linear, constant coefficient and 

second-order differential equation (1): 

 
, -{ ̈( )}  ,  -{ ̇( )}  , -* ( )+

 {( ( ))} 
(1) 

Where , - ,  ,  - ,  , -  are the mass, damping and 

stiffness matrices, {( ( ))}  is the excitation force  

vector, and * ( )+  is the displacement vector 

depending on time  . Solution of Equation (1) is 

given in detail in the literature [92-95].  

 

3.10 Intelligent Fault Diagnosis Techniques Based 

on Vibration 

Traditionally, the framework of intelligent fault 

diagnosis includes four main steps: signal acquisition, 

feature selection, feature extraction, and fault sorting 

[96-98]. This method needs to obtain the signals in 

normal and various abnormal states for learning prior 

to performing diagnosis. Besides, in order to improve 

its universality, for example, further tests on a larger 

sample size should be conducted. 

 

3.11 Artificial Neural-Network Approach for 

Fault Detection (ANN) 

An artificial neural network (ANN) is a pattern of 

information processing similar to the way processing 

information for humans [99, 100]. Due to the ability 

of ANNs in generalizing and studying nonlinear 

relationships between output data and input data, they 

provide a flexible mechanism for learning and 
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recognizing system faults. They have been 

established as a powerful intelligence technique in 

the fault diagnosis of rotating machinery. Fault 

diagnosis using ANN classifiers may largely increase 

the reliability of fault diagnosis methods. 

 

3.12 Adaptive Neuro-Fuzzy Inference System 

(ANFIS) 

Adaptive Neuro-Fuzzy Inference System (ANFIS) is 

an integration technique in which neural networks are 

applied to make the best or most effective use of the 

fuzzy inference system. ANFIS forms a series of 

fuzzy if–then rules with appropriate membership 

functions to make the stipulated input–output pairs. 

The initial fuzzy rules and membership functions are 

first set by using experienced humans about the 

outputs to be modeled. Then, ANFIS can modulate 

these fuzzy if–then rules and membership functions 

to minimize the error percentage in output functions, 

measure or explain the input–output relationship of a 

complex system [101, 102]. 

 

3.13 Deep Learning for Fault Diagnosis  

Deep learning can be applied for fault diagnosis 

[103]. Deep learning is a real time online plan or 

scheme that can improve the accuracy of 

identification, classification, prediction, and efficient 

for initial faults that cannot be identified by 

traditional statistic techniques. In machine learning, 

we can choose features manually and a classifier to 

arrange and investigate images while in deep 

learning, modeling steps and feature extraction are 

done automatically. Deep learning had formed a hot 

topic mostly in image application and object 

recognition. It is also suitable for large system with 

multiple variables and fault diagnosis [104-107].  

 

4. Conclusion 

Vibration experts and developers have done great 

efforts to create functions that solve the few 

limitations of vibration analysis, however, there are 

still some issues that we are unable to see through 

vibration analysis such as; 
 

 Very High frequency: Common sensors have a 

maximum frequency of 10 to 15 kHz. If one does 

not invest in special sensors, higher frequencies 

will be invisible to the equipment. 

 

 Ultra-low frequencies: Although it is possible to 

measure very low frequencies, they are often 

ignored because they require long samples which 

are not done in a normal route. 

 

 

 Lubricant condition: This is one of the biggest 

limitations of vibration analysis. The condition of 

the lubricant cannot be evaluated by this 

technique, you can only suspect the lack of it. 
 

Many vibration analysis techniques are presented to 

explore their capabilities, advantages, and 

disadvantage in diagnosing and monitoring rotating 

systems. The following points can be concluded: 

 

1. The identification of the bearing faults by using 

frequency analysis is difficult because, it is not 

suitable for non-stationary signal analysis. 
 

2. The identification of the bearing faults is possible 

by using envelope analysis.  However, the 

envelope analysis has a major drawback 

consisting of the requirement of a preliminary 

research of the resonance frequencies. 
 

3. The identification of the bearing faults is possible 

by using Short Time Fourier Transform (STFT). 

However, the problem with STFT is that it 

provides constant resolution for all frequencies 

since it uses the same window for the entire 

signal. Therefore, once the window function is 

chosen, the time and frequency resolution are 

fixed. So, there is a trade‐off to choose a proper 

window function between the time resolution and 

the frequency resolution:  a longer window will 

lead to a higher frequency resolution with a lower 

time frequency and vice versa. 
 

4. The identification of the bearing faults is possible 

by using Empirical Mode Decomposition (EMD). 

Unfortunately, there are two problems in EMD, 

which are the selection of the suitable 

decomposition level and its intrinsic mode 

functions (IMF) which contains the necessary 

information for faults diagnosis. 
 

5. Deep learning for fault diagnosis had been paid 

less attention. Because of these difficulties:(1) for 

images, the characteristics of recognition objects 

are relatively fixed, but faults are changeable, 

such as patterns variability and shape 

variability;(2) as fault has no fixed pattern, 

whether deep learning can capture a useful 

"hierarchical grouping" or" part-whole 

decomposition" of the fault data is unknown; (3) 

the detection mechanism and ability based on 

deep learning is not yet well explored, especially 

for the incipient faults not any observable 

changes, which is a bottle neck that traditional 

methods suffering. 
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