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ABSTRACT 

This paper investigates theoretically forced convection from an inclined elliptic cylinder placed in a nanofluid 

cross laminar flow with constant surface temperature. The nanofluid is created by suspending copper particles 

in water. The referred problem is studied through solving the conservation equations of mass, momentum, and 

energy using Fourier spectral method. There are some important parameters affect the heat transfer 

characteristics which can be presented as follows: Inclination angle which varies from 0 to 90 degrees, and 

copper nanoparticles volume fraction starts from 0 up to 0.05. these parameters are investigated under the 

conditions: Reynolds number is 50, elliptic axis ratio is fixed at 0.5, and constant surface temperature. The 

results are found to be in a good agreement with the previous studies in the same category, for different axes 

ratios and Prandtl number of 0.7. The conclusions of the present investigation show that when nanoparticles 

volume fraction increases, an obvious enhancement in heat transfer is produced. On the other hand, when 

changing the angle of inclination from 0 up to 90 the flow exhibits lower heat transfer rates, and all these results 

are indicated through calculating average Nusselt number. 
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1. Introduction 

Numerous industrial applications include forced 

convection heat transfer from cylinders with circular 

and non-circular cross sections, such as elliptic, such 

as in boilers, heat exchangers, thermal storage 

systems, solar heating systems, nuclear reactor 

cooling, electronics and so forth. Due to these 

extensive applications in a variety of industrial 

contexts, significant research efforts have been 

conducted to study the forced convection heat transfer 

from cylinders with different cross sections. These 

efforts have used both theoretical and experimental 

methods. 

Much research work has been expended on ways to 

enhance the heat transfer characteristics of the 

conventional fluids employed in these applications, 

such as water. To that end, a new class of fluid known 

as 'nanofluids' is now widely employed in a variety of 

applications, such as heat exchangers, condensers, and 

evaporators. Such fluids are produced by dispersing 

nanoparticles of metals or their oxides in a base fluid 

such as water, and the resulting fluid has superior heat 

conduction capabilities than a conventional fluid [1]. 

Choi and Eastman [2] used suspended metallic 

nanoparticles in the base fluid in a heat exchanger and 

claimed that the heat transfer characteristics have been 

improved and so Huminic and Huminic[3] reviewed 

many articles prove that heat transfer is enhanced 

when nanofluids are used, basically in heat 

exchangers’ applications. Saidur et al. [4] made a 

review on applications and challenges of nanofluids, 

whereas Rashidi et al. [5] have investigated 

applications of nanofluids in condensing and 

evaporating systems. 

There is a significant amount of literature available on 

forced convection from an elliptic cylinder placed in 

basic fluids (such as air or water), for example, see 

Refs [6, 7, 8 and 9]. 

In contrast, for nanofluids, recently, an inclined 

elliptic tube with a constant aspect ratio of 0.5 

submerged in a flowing water based Al2O3 nanofluid 

was studied by Sasmal [10], particularly, gives 

extensive numerical data for the following conditions: 

The Reynolds number ranges from 0.01 to 40, the 

cylinder inclination angle ranges from 0 to 90, and the 

nanoparticle volume fraction ranges from 0% to 6%. 

He claimed that The Nusselt number and drag force 

both rise with nanoparticle volume fraction, and the 

average Nusselt number increases with increasing 

inclination angle. The numerical study of steady 

forced convection of water-based nanofluids around 

an elliptic cylinder by Khan et al [11]. Copper (Cu) 

and aluminum oxide (Al2O3) nanoparticles were 

mixed into the water to improve heat transfer. The 
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governing equations are numerically solved using the 

Runge-Kuta-Fehlberg technique of seventh order and 

enhanced by the shooting method. The study deduced 

that the local Nusselt number is found to be increased 

with increasing solid volume fraction of nanoparticles 

and with axis ratio increasing. Apart from elliptic 

cylinders, numerical study of forced convection from 

a steady rotating circular cylinder in a nanofluid flow 

has been carried out by Mahfouz et al. [12]. The 

Reynolds number is considered up to 200, and the 

volume fraction of nanoparticles is up to 5%. 

According to the findings, increasing the volume 

fraction of nanoparticles boosts the heat transfer rate 

for both fixed and rotating cylinder. 

It has been observed that the overall rate of heat 

transfer is significantly influenced by the cross-

sectional area of a cylinder, its orientation, and the 

type of fluid. The main objective of this paper is to 

conduct a thorough investigation of how the angle of 

inclination and nanoparticle volume fraction affects 

the heat transfer through an elliptic cylinder as there is 

a lack in the previous studies for this case. 
 

2 .Problem Formulation 

2.1 Governing equations and boundary conditions 

In this work, consider unsteady laminar flow of a 

nanofluid over an elliptical tube with a length assumed 

to be infinite. The elliptical cross-section is described 

by b and a which refer to the minor and major axes as 

illustrated in geometry of the flow, Figure (1) and the 

figure shows also the cartesian and elliptic 

coordinates. Cylinder surface has a constant 

temperature of 𝑇𝑠 and inclined to the flow direction 

with an angle λ. The far stream velocity of the 

nanofluid is 𝑈∞ and have a uniform temperature of 𝑇∞. 

 

Figure 1- Schematic representation of flow over an 

elliptic cylinder and coordinates system 

 

Assuming 2D unsteady convective nanofluid flow, 

nanoparticles are assumed to be uniform shape and 

size, and neglecting buoyancy force.  The governing 

equations, based on the previous assumptions, of 

motion and energy in Cartesian coordinates is given as 

follows: 

 
∂𝜁

∂𝑡
+ 𝑢

∂𝜁

∂𝑥
+ 𝑣

∂𝜁

∂𝑦
=

2

Re
∇2𝜁                          (1) 

𝜁 − ∇2𝜓 = 0                                                     (2) 

∂𝜙

∂𝑡
+ 𝑢

∂𝜙

∂𝑥
+ 𝑣

∂𝜙

∂𝑦
=

2

RePr
∇2𝜙                  (3) 

The velocities are defined as   

𝑢 =
∂𝜓

∂𝑦
     ,         𝑣 = −

∂𝜓

∂𝑥
 

Where u and v are the components of the velocity in 

the directions of x and y axes, Re, Pe and Pr are the 

Reynolds number, Peclet number and Prandtl number, 

respectively, (based on the cylinder diameter and the 

velocity of free stream). ϕ represents the 

dimensionless temperature, ψ is the stream function, 

and ζ represents the vorticity. All dimensionless 

parameters maybe expressed related to the 

dimensional parameters with primes as follows: 

 

𝑥 =
𝑥′

𝑐
,   𝑦 =

𝑦′

𝑐
,   𝑢 =

𝑢′

𝑈∞

,    𝑣 =
𝑣′

𝑈∞

    

𝑡 =
𝑈∞𝑡′

𝑐
 ,   𝜓 =

𝜓′

𝑐𝑈∞

,   𝜁 = −
𝜁′𝑐

𝑈∞

,   𝜙 =
𝑇 − 𝑇∞

𝑇𝑠 − 𝑇∞

 

Reynolds and Peclet numbers are defined 

 

Re =
2𝑈∞𝑐

𝜐
     𝑎𝑛𝑑    Pe = Re ⋅ Pr 

Where υ stands for the kinematic viscosity, and c is the 

focal distance 

Applying the transformation from the Cartesian to the 

elliptical coordinates (ξ, η) is needed to achieve an 

acceptable model and that could be done through 

 

𝑥 = 𝑐 cosh 𝜉 cos 𝜂      𝑎𝑛𝑑     𝑦 = 𝑐 sinh 𝜉sin 𝜂 

The governing equations (1), (2), and (3) are converted 

through the transformation 

 

𝐻
∂𝜁

∂𝑡
=

∂𝜓

∂𝜉

∂𝜁

∂𝜂
−

∂𝜓

∂𝜂

∂𝜁

∂𝜉
+

2

Re
∇2𝜁                     (4) 

𝐻𝜁 − ∇2𝜓 = 0                                                      (5) 

𝐻
∂𝜙

∂𝑡
=

∂𝜓

∂𝜉

∂𝜙

∂𝜂
−

∂𝜓

∂𝜂

∂𝜙

∂𝜉
+

2

Pe
∇2𝜙                 (6) 
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Where  

 

∇2=
∂2

∂𝜉2
+

∂2

∂𝜂2 
    , 𝐻 =

1

2
(cosh 2𝜉 − cos 2𝜂) 

 

From the no slip and isothermal conditions at cylinder 

wall (𝜉 = 𝜉0) and the far stream conditions (𝜉 → 𝜉∞) 

the boundary conditions can be expressed in the new 

coordinates as 

 

𝜓 =
∂𝜓

∂𝜉
=

∂𝜓

∂𝜂
= 0  , 𝜙 = 1  when  𝜉 = 𝜉0           (7𝑎) 

   
∂𝜓

∂𝜉
→ −

1

2
 e𝜉 sin(𝜆 − 𝜂) ,  𝜁 → 0  as 𝜉 → ∞     (7b)  

  
∂𝜓

∂𝜂
→

1

2
 e𝜉 cos(𝜆 − 𝜂) , 𝜙 = 0  as 𝜉 → ∞         (7c) 

Where the constant 𝜉0 is defined by 𝜉0 = tanh−1 (AR) 

,and AR is the Axis ratio AR=b/a. 

The Navier–Stokes and energy equations (4), (5) and 

(6) are ready to be solved now using the spectral 

method but first we need to approximate the vorticity, 

stream function and temperature using the expansion 

series of Fourier as follows: 

 

𝜓 =
1

2
𝐹0(𝜉, 𝑡) + ∑  

𝑁

𝑛=1

𝑓𝑛(𝜉, 𝑡) sin 𝑛𝜂

+ 𝐹𝑛(𝜉, 𝑡) cos 𝑛𝜂       (8𝑎) 

𝜁 =
1

2
𝐺0(𝜉, 𝑡) + ∑  

𝑁

𝑛=1

𝑔𝑛(𝜉, 𝑡) sin 𝑛𝜂

+ 𝐺𝑛(𝜉, 𝑡) cos 𝑛𝜂      (8𝑏) 

𝜙 =
1

2
𝐻0(𝜉, 𝑡) + ∑  

𝑁

𝑛=1

ℎ𝑛(𝜉, 𝑡) sin 𝑛𝜂

+ 𝐻𝑛(𝜉, 𝑡) cos 𝑛𝜂               (8𝑐) 

 

 

Applying the above series to the governing equations 

(4), (5), and (6), multiplying each side times {1, 

sin 𝑛𝜂 ,  cos 𝑛𝜂 : n=1, 2, . . ..} and the integrating from 

0 to 2𝜋 with respect to 𝜂 we can find that: 

 

∂2𝐹0

∂𝜉2
=

1

2
[(cosh 2𝜉)𝐺0 − 𝐺2]                         (9𝑎) 

 

∂2𝐹𝑛

∂𝜉2
− 𝑛2𝐹𝑛 =

1

2
(cosh 2𝜉)𝐺𝑛 

                   −
1

4
[𝐺0𝛿𝑛2 + 𝐺|𝑛−2| + 𝐺(𝑛+2)]     (9𝑏) 

 

 

∂2𝑓𝑛

∂𝜉2
− 𝑛2𝑓𝑛 =

1

2
(cosh 2𝜉)𝑔𝑛 

                     −
1

4
[sgn(𝑛 − 2) 𝑔|𝑛−2| + 𝑔(𝑛+2)]       (9𝑐) 

 

1

2
[(cosh 2𝜉)

∂𝐺0

∂𝑡
−

∂𝐺2

∂𝑡
]

= (
2

𝑅𝑒
)

∂2𝐺0

∂𝜉2
+ 𝑆𝑛0(𝜉, 𝑡)        (10𝑎) 

 

[(cosh 2𝜉)
∂𝐺𝑛

∂𝑡
−

1

2
[
∂𝐺0

∂𝑡
𝛿𝑛2 +

∂𝐺∣𝑛−2∣

∂𝑡
+

∂𝐺𝑛+2

∂𝑡
]]

=
4

𝑅𝑒
[
∂2𝐺𝑛

∂𝜉2
− 𝑛2𝐺𝑛] + 𝑛𝑔𝑛

∂𝐹0

∂𝜉

− 𝑛𝑓𝑛

∂𝐺0

∂𝜉
+ 𝑆𝑛1(𝜉, 𝑡)             (10𝑏) 

 

[(cosh 2𝜉)
∂𝑔𝑛

∂𝑡
−

1

2
sgn(𝑛 − 2)

∂𝑔∣𝑛−2∣

∂𝑡
−

1

2

∂𝑔𝑛+2

∂𝑡
]

=
4

Re
[
∂2𝑔𝑛

∂𝜉2
− 𝑛2𝑔𝑛] + 𝑛𝐹𝑛

∂𝐺0

∂𝜉

− 𝑛𝐺𝑛

∂𝐹0

∂𝜉
+ 𝑆𝑛2(𝜉, 𝑡)             (10𝑐) 

1

2
[(cosh 2𝜉)

∂𝐻0

∂𝑡
−

∂𝐻2

∂𝑡
]

= (
2

𝑅𝑒
)

∂2𝐻0

∂𝜉2
+ 𝑍𝑛0(𝜉, 𝑡)     (11𝑎) 
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[(cosh 2𝜉)
∂𝐻𝑛

∂𝑡
−

1

2
[
∂𝐻0

∂𝑡
𝛿𝑛2 +

∂𝐻∣𝑛−2∣

∂𝑡
+

∂𝐻𝑛+2

∂𝑡
]]

=
4

𝑅𝑒
[
∂𝐻𝑛

∂𝜉2
− 𝑛2𝐻𝑛] + 𝑛ℎ𝑛

∂𝐹0

∂𝜉

− 𝑛𝑓𝑛

∂𝐻0

∂𝜉
+ 𝑍𝑛1(𝜉, 𝑡)            (11𝑏) 

[(cosh 2𝜉)
∂ℎ𝑛

∂𝑡
−

1

2
sgn (𝑛 − 2)

∂ℎ∣𝑛−2∣

∂𝑡
−

1

2

∂ℎ𝑛+2

∂𝑡
]

=
4

Re
[
∂2ℎ𝑛

∂𝜉2
− 𝑛2ℎ𝑛] + 𝑛𝐹𝑛

∂𝐻0

∂𝜉

− 𝑛𝐻𝑛

∂𝐹0

∂𝜉
+ 𝑍𝑛2(𝜉, 𝑡)            (11𝑐) 

 

Where 𝛿𝑚𝑛 is the Kronecker delta which can be 

defined as 

𝛿𝑚𝑛 = 1 if 𝑚 = 𝑛 , 𝛿𝑚𝑛 = 0, if 𝑚 ≠ 𝑛 

And the terms 𝑆𝑛𝑇  and 𝑍𝑛𝑇  are identifiable functions 

of t and 𝜉 where T varies (1,2, and 3). Equations (9a) 

to (9c), (10a) to (10c) and (11a) to (11c) are three sets 

of P.D.E.s and each set of (2N + 1) need to be solved, 

and N is the last term order in the series of Fourier. 

 

2.2 Boundary Conditions 

We can describe the above boundary conditions in 

equations (7a), (7b) and (7c) using Fourier series (8a), 

(8b) and (8c) resulting: 

 

𝐹0 =
𝜕𝐹0

𝜕𝜉
= 𝑓𝑛 =

𝜕𝑓𝑛

𝜕𝜉
= 𝐹𝑛 =

𝜕𝐹𝑛

𝜕𝜉
= ℎ𝑛 = 𝐻𝑛 = 0   

  𝐻0=2  when   𝜉 = 𝜉0                                         (12𝑎) 

 

𝐻0, 𝐻𝑛 , ℎ𝑛 , 𝐺0, 𝑔𝑛, 𝐺𝑛 → 0          as  𝜉 → ∞    (12𝑏) 

𝐹0 → 0  , 𝑓𝑛 →
1

2
𝑒𝜉𝑐𝑜 𝑠(𝜆) 𝛿𝑛1     as  𝜉 → ∞   (12𝑐) 

𝐹𝑛 → −
1

2
𝑒𝜉𝑠𝑖 𝑛(𝜆) 𝛿𝑛1      as  𝜉 → ∞            (12𝑑) 

From the conditions (12a) to (12d) and equations (9a), 

(9b) and (9c) we may have the integral conditions as 

shown 

∫  
∞

𝜉0

{(cosh 2𝜉)𝐺0 − 𝐺2}d𝜉 = 0             (13𝑎) 

 

∫  
∞

𝜉0

(
1

2
(cosh 2𝜉)𝐺𝑛 

−
1

4
(𝐺0𝛿𝑛2 + 𝐺|𝑛−2| + 𝐺𝑛+2))e−𝑛𝜉d𝜉

= − sin 𝛼𝛿𝑛1               (13𝑏) 

 

 

∫  
∞

𝜉𝑜

(
1

2
(cosh 2𝜉)𝑔𝑛 

−
1

4
(sgn (𝑛 − 2)𝑔|𝑛−2| + 𝑔𝑛+2))e−𝑛𝜉d𝜉

= cos 𝛼𝛿𝑛1                                (13𝑐) 

 

The above equations 13a, 13b and 13c are used when 

calculating the boundary conditions at cylinder surface 

of 𝐺0, 𝐺𝑛 𝑎𝑛𝑑 𝑔𝑛 at every step of time. 

 

 

2.3 Solution Procedure 

The governing Equations from (9a) to (11c) are 

numerically solved using the iterative procedure 

method of Crank-Nicolson by employing a finite 

difference type of spatial discretization to each P.D.E. 

Reynolds number has a value of 50. Furthermore, 

volume fraction of nanoparticles varies within the 

range of (0 to .05). The numerical scheme to be used 

here to generate the solution of the main parameters is 

the same of that used by Dennis[13]. The different tube 

geometry, the co-ordinates system and the fluid 

properties are the main differences here. 

The principle of solving is to set all the differential 

equations in the form: 

 

∂𝑋𝑛

∂𝑇
=  𝑎𝑛  

∂2𝑋𝑛

∂𝜉2
+  𝑏𝑛  

∂𝑋𝑛

∂𝜉
+ 𝑐𝑛 𝑋 + 𝑑𝑛

=  𝑞𝑛(𝜉, 𝑇)                               (14) 

where 𝑎𝑛, 𝑏𝑛, 𝑐𝑛 and 𝑑𝑛 are easily identifiable 

functions of 𝜉 and 𝑇. The method of 

solution used is the Crank-Nicolson implicit method, 

which can be written as 

𝑋 (𝜉, 𝑇) − 
1

2
 ℎ 𝑞𝑛 (𝜉, 𝑇) = 𝑋 (𝜉, 𝑇 − ℎ) 

+ 
1

2
 ℎ 𝑞𝑛 (𝜉, 𝑇 − ℎ)                                       (15) 

 

where h is the integration step in the T direction. 

Central differences are used to 

approximate the space derivatives 
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 ℎ2𝑞𝑛(𝜉, 𝑇) = 

(𝑎𝑛(𝜉, 𝑇) +
1

2
 ℎ 𝑏𝑛(𝜉, 𝑇))  𝑋(𝜉 + 𝑑𝑥 , 𝑇) 

+ ( 𝑎𝑛(𝜉, 𝑇) −  
1

2
 ℎ 𝑏𝑛(𝜉, 𝑇))  𝑋 (𝜉 − 𝑑𝑥 , 𝑇)  

+( ℎ2𝑐𝑛(𝜉, 𝑇) − 2𝑎𝑛(𝜉, 𝑇) ) 𝑋 (𝜉 , 𝑇) 

+ ℎ2𝑑𝑛(𝜉, 𝑇)                                                (16) 

                        

And substituting in the main differential equations 

using the above expression could lead us to have a tri-

diagonal matrix in the form  

𝐴𝑛(𝜉, 𝑇) 𝑋 (𝜉 − 𝑑𝑥 , 𝑇) + 𝐵𝑛 𝑋 (𝜉 , 𝑇) 

+𝐶𝑛(𝜉, 𝑇) 𝑋 (𝜉 + 𝑑𝑥 , 𝑇)  =  𝐷𝑛(𝜉, 𝑇)        (17) 

 

The right-hand side is considered known through 

applying the deduced condition  

The above cycle from n = 1 to N is repeated until, 

ultimately, convergence is 

achieved. This is decided by the test 

| 𝑋(m+1)(𝜉, 𝑇) −  𝑋(m)(𝜉, 𝑇)| ˃ 10−5          (18) 

 

For all n = 1,2,3, ... N and for all grid values of 𝜉 

throughout the field, i.e. 𝜉 = 0, dx, 2dx, . . . L. Here, 

the superscripts (m) and (m + 1) refer to two 

successive iterates in the cyclic procedure. 

 

The above procedure is done to get all the functions in 

the whole domain to secure obtaining the properties at 

every single point in the time and space domain. And 

the procedure us introduced in the flow chart Figure 

(2). 

 

 

2.3 Nanofluids thermo-physical properties 

The physical properties of pure copper and water at 

average atmospheric temperature are obtained from 

[14] and presented in Table (1).  

 

Table 1- Thermophysical properties of pure water 

and copper at room temperature. 

Material 
𝝆 

(𝒌𝒈/𝒎𝟑) 
𝝁 

(𝒌𝒈/𝐦𝐬) 
𝒌 

(𝒘/𝒎. 𝑲) 
𝑪𝒑 

(𝑱/𝐤𝐠. 𝐊) 

Water 997.1 0.001 0.6 4179 

Copper 8954 - 400 383 

 

 

We assume Brinkman [15] model for computing 

effective viscosity of the nano-fluid. The expression 

for effective viscosity is given by, 

 

𝜇𝑛𝑓 =
𝜇𝑓

(1−𝜙𝑝)2.5
       (19) 

 

and 𝜙𝑝 here refers to the volume fraction of 

nanoparticles related to the total liquid volume 

 

𝜙𝑝 =
Volume of solid (nano) particles

𝑇𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑛𝑎𝑛𝑜𝑓𝑙𝑢𝑖𝑑
        (20) 

 

Above correlation was validated by Xuan and Li[16] 

for copper nanoparticles with water as a base fluid. 

Their experiment gave good results that match with 

Brinkman model. Effective density of the nano-fluid 

at reference temperature is given by: 

 

𝜌𝑛𝑓 = 𝜙𝑝𝜌𝑝 + (1 − 𝜙𝑝)𝜌𝑓        (21) 

 

Where 𝜌𝑝 is the density of the solid nanoparticles at 

reference temperature, and 𝜌𝑓 is the density of the base 

fluid at reference temperature. The effective heat 

capacitance of the nano-fluid at the reference 

temperature is calculated by the equation given by 

Xuan and Li[16] as given bellow. 

 

(𝜌𝐶𝑝)
𝑛𝑓

= 𝜙𝑝(𝜌𝐶𝑝)
𝑝

+ (1 − 𝜙𝑝) ⋅ (𝜌𝐶𝑝)
𝑓
        (22) 

 

The effective thermal conductivity is determined using 

the model of Maxwell-Garnet’s[14] especially for two 

phase solution and the shape of nanoparticles is 

spherical and is expressed below 

 

𝑘𝑛𝑓 = 𝑘𝑓 [
(𝑘𝑝+2𝑘𝑓)−2𝜙𝑝(𝑘𝑓−𝑘𝑝)

(𝑘𝑝+2𝑘𝑓)+𝜙𝑝(𝑘𝑓−𝑘𝑝)
]             (23) 

 

It is important to mention here that Maxwell–Garnett’s 

model and Brinkman model is the basic model for 

micro-suspension and is restricted to spherical 

particles only. Accordingly, the present theoretical 

consideration has been kept simple with the use of 

basic models available in literature and the effective 

thermal conductivity and effective viscosity of the 

nano-fluid is approximated by Maxwell–Garnett 

model and Brinkman model respectively, within the 

domain of the single-phase formulation approach  . 

Notice that a similar approach was previously used by 

earlier researchers [21] and [22] to model the effective 

thermo-physical properties of the nanoparticle 

suspension. Such an approach also finds experimental 
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confirmation in the data reported by Xuan and Li [9] 

for Cu–water and oil–water nano-fluids. The thermo- 

physical properties of the nano-fluids are assumed to 

be constant . 

We can express the thermal diffusion by expressing 

diffusivity. 

 

𝛼𝑛𝑓 =
𝑘𝑛𝑓

(𝜌𝐶𝑝)
𝑛𝑓

        (24) 

 

2.4 Important analysis parameters 

We need to introduce some important parameters to 

expand our analysis of the present study in details. For 

instance, Nusselt number: it is our heat transfer 

indicator, and we can express it as a local value (Nu) 

deduced from the convective heat transfer coefficient 

 

ℎ = −

𝑘𝑛𝑓
𝑐

𝐻
𝜉0

1
2

(∂𝜙

∂𝜉
)

𝜉0

                                       (25 a) 

𝑁𝑢 =
2𝑐ℎ

𝑘𝑓
= −

2cosh 𝜉0

𝐻
𝜉0

1
2

(𝜕𝜙

𝜕𝜉
)

𝜉0

.
𝑘𝑛𝑓

𝑘𝑓

        (25 b) 

And the Nusselt number as an average value (Nu
—

) is 

obtained from’ 

 

Nu
—

=
1

𝐿
∫  

𝐿

0
𝑁𝑢. d𝑠 = −

2𝜋

(𝐿/𝑎)
(∂𝜙

∂𝜉
)

𝜉0

.
𝑘𝑛𝑓

𝑘𝑓

        (26) 

 

 

3. Results and discussion 

In the beginning and before presenting the study 

results, it is unavoidable to check the accuracy of the 

method of solution. By overviewing the previous work 

in the same category, some studies’ results are  

found to be trustable to compare with. These studies 

are investigated under the following conditions, forced 

convection, cross flow, stationary cylinder with 

circular cross section, Pr=0.6, Re=5, 20 and 40 and 

constant surface temperature The axis ratio AR in the 

present study needs to be limited to a value to turn the 

elliptical section to be so close to the circular cylinder 

to take almost the same conditions of comparative 

studies and that could be achieved by putting AR close 

to the unity (AR=0.97). The compared results are 

illustrated in table (2) where the face of comparison is 

the average Nusselt number. By comparing the results 

an average variation from each comparative could be 

calculated. Differences from each reference could be 

presented 2.2% from Hatton et al [17], 6.1% from 

Collis and Williams [18], 2.6% from Dennis et al [19] 

and 2.9% from Badr [20]. To validate the numerical 

method, comparisons are made with the available 

results in the literature for some special cases and the 

results are found to be in excellent agreement. On the 

other hand, for the elliptic cylinder, Figure (3) 

illustrates a comparison of the average Nu for Re in 

the range of 20 to 200 with Badr [20] under the same 

conditions: AR=0.6, Pr=0.7, and λ=30 ⁰. The 

definition of Re is modified to match that of Badr to 

compare the results easily, and that has been done by 

relating it to the focal length instead of the major axis 

length. The comparison shows a good agreement with 

Badr. 
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Figure 2- Solution Procedure Flow Chart 

Table 2- Comparison of average Nusselt number for forced convection flow over circular cylinder Pr=0.7. 

Re 
Present 

AR=0.97 
[17]Hatton  

AR=1 

[18]Collis  

AR=1 

[19]Dennis  

AR=1 

[20]Badr  

AR=0.96 

5 1.521 1.561 1.395 1.423 1.456 

20 2.632 2.548 2.936 2.557 2.550 

40 3.511 3.318 3.185 3.480 3.490 

 

Figure 3- Comparison between the obtained average Nusselt number with Badr [20] for the case AR=0.6, Pr=0.7, 

and 𝜆=30⁰ 
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For the local values of Nu, Figure (4) presents a 

comparison of the local Nu with Badr [20] for the case 

AR=0.5, Pr=0.7, 𝜆=0⁰, and Re=20, 50, and 100, and 

the comparison was satisfying. 

 

 Figure 4- Comparison between the local Nusselt 

number with Badr [20] for the case AR=0.5, Pr=0.7, 

=0⁰, and Re=20, 50, and 100𝜆 

Figure (5) presents the variation of the local Nusselt 

number along the elliptical cylinder surface due to 

nanofluid cross flow at Re=50 with zero angle of 

inclination and particles volume fraction varies from 0 

to 5%. Obviously, the maximum value of Nusselt 

number is located at the point of stagnation η=180⁰ and 

has a value of 30.35 for water without nanoparticles, 

31.61 for nanofluid with 2.5% nanoparticles volume 

fraction which has an increase of 4.15 % and 32.82 for 

5 % volume fraction with an increase of 8.14 %. The 

comparison shows significant enhancement in Nusselt 

number along the whole surface. In the direction of 

flow, the local Nusselt number decreases to find its 

lowest value at the trailing edge. It can be concluded 

that, the local Nusselt number increases with 

increasing ɸ. There is a significant increase in local 

Nusselt number distribution near the front stagnation 

region with increasing ɸ. The maximum value of the 

local Nusselt number occurs at front face of the 

cylinder facing the incoming flow and decreases 

gradually over the cylinder surface. This is due to 

higher thermal gradient and accordingly higher local 

Nusselt number distribution. 

The effect of inclination angle of the tested cylinder on 

the local Nusselt number is shown in Figure (6). It 

observed that the Nusselt number exhibits an increase 

with increasing nanoparticles volume fraction. 

Maximum value of Nu changes its location slightly 

with changing 𝜆 from 0⁰ to 30⁰ to be at 𝜂=185⁰, where 

Nu has a maximum increase of 4.34% for 𝜙𝑝=2.5 % 

and 8.6% for 𝜙𝑝=5%. Nusselt number has its lowest 

value for all 𝜙𝑝 values at 𝜂=73⁰. Further increase of 

inclination angle to 𝜆=60⁰ shows that, the maximum 

Nu number changes its position to has its value at 

𝜂=195⁰ and lowest value at 𝜂=121⁰ but the change of 

Nu along the surface increases with 𝜙𝑝 in some 

regions and decrease in others as presented in the 

Figure (7). This may be occurred due the complete 

period of vortex shedding cycle. Effect of volume 

fraction of nanoparticles on the local Nusselt number 

for the case of Re=50, 𝜆=90⁰ and AR=0.5 are 

illustrated in Figure (8).  The distribution is almost 

symmetric and Nu has a maximum value in two 

locations on the surface at 𝜂=210⁰ and 340⁰ and the 

same for the lowest values at 𝜂=45⁰ and 145⁰. This 

may be occurring due the formation of intensified 

wake vortices behind the vertical cylinder. 

Table (3) distinguishes the change in average Nu 

based on changing angle of inclination and 

nanoparticles volume fraction. The trend is increasing 

in average Nu with increasing 𝜙𝑝 for all 𝜆 values. For 

instance, there was a maximum increase of 12.4 % 

under the conditions 𝜆=60⁰ and 𝜙𝑝=5 %. The table 

discusses the changes of average Nu with changing 𝜆 

from 0⁰ to 90⁰, 𝜙𝑝 from 0 % to 5 %, Re=50 and 

AR=0.5. For 𝜆=0⁰ the average Nu exhibits the lowest 

increases with a maximum value of 5.369 % for 𝜙𝑝=5 

%. 
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Figure 5- Effect of volume fraction of nanoparticles on the local Nusselt number for the case of Re=50, 𝜆=0⁰ and 

AR=0.5 

Figure 6- Effect of volume fraction of nanoparticles on the local Nusselt number for the case of Re=50, 𝜆=30⁰ and 

AR=0.5 
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Figure 7- Effect of volume fraction of nanoparticles on the local Nusselt number for the case of Re=50, 𝜆=60⁰ and 

AR=0.5 
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Effect of angle of inclination and nanoparticles volume fraction of average Nusselt number at Re=50,  -Table 3

AR=0.5. 

𝝀 𝝓𝒑% 𝐍𝐮
—  INCREASE IN NUSSELT 

O0.0 

0 11.808 0% 

2.5 12.442 5.369% 

5 13.075 10.73% 

O30 

0 11.127 0% 

2.5 11.780 5.868% 

5 12.397 11.414% 

O60 

0 11.953 6.417% 

2.5 12.720 0.574% 

5 13.441 12.449% 

O90 

0 11.421 0% 

2.5 11.906 4.246% 

5 12.395 8.528% 

 

 

The average Nu with time is introduced in Figure (9) 

for the case 𝜆=  0⁰ and in Fig.9 for 𝜆=90  ⁰. The results 

show the effect of increasing nanoparticles volume 

fraction on the average Nu, and a significant 

enhancement is found in Nu value with time in the 

presented case of Re=50 and AR=0.5.  

 

 

Figure 9- Effect of nanoparticles volume fraction on 

average Nu in unsteady flow regime for the case 

Re=50, AR=0.5, and 𝜆= 0⁰
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Figure 10- Effect of nanoparticles volume fraction on 

average Nu in unsteady flow regime for the case 

Re=50, AR=0.5, and 𝜆=90 ⁰. 
 

Figure (11) illustrates streamlines pattern for each 

investigated value of 𝜆. (a) represents λ=0⁰ where the 

streamlines are smooth, and the flow has no wakes in 

the trailing region as it exhibits a low Re value. The 

flow regime in (b) where λ=30⁰ starts to initiate a wake 

region but without any vortices. For (c) the angle 

changed to be λ=60⁰ as shown and a single vortex 

begins to generate in the wake region in the lower half 

of the regional area. The case λ=90⁰ in (d) shows 

double vortices are generated with symmetric shapes 

and positions from the center of the cylinder and that 

happens due to ignoring the gravitational force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Streamlines patterns for the flow at  -Figure 11

=90⁰𝜆=60⁰ and (d) 𝜆=30⁰, (c) 𝜆=0⁰, (b) 𝜆Re=50, (a)  

 

5. Conclusions 

Numerical simulations have been performed to 

investigate unsteady laminar forced convection from 

an inclined elliptic cylinder placed in a nanofluid cross 

laminar flow with constant surface temperature. The 

nanofluid is created by suspending copper particles in 

water. The issue of changing the angle of inclination 

with enhancing the heat transfer rates using nanofluid 

flow was studied. Inclination angle varies from 0⁰ to 

90⁰, nanoparticles volume fraction occupied the values 

of 0%, 2.5% and 5% and Re=50. The conclusions 

which can be drawn from this study are: 

1) The numerical results are validated and 

comparisons are made with the available results 

in the published literature for some special cases 

and the results are found to be in excellent 

agreement.  

2) The effect of increasing 𝜙𝑝 was as expected to 

enhance Nu by a significant increase and the 

maximum increase of 12.4% was detected at 

λ=60⁰ and 𝜙𝑝= 5% but for λ=90⁰ heat transfer 

does not enhance in a fulfilling way.  

3) Increasing the inclination angle tends to enlarge 

the wake region and the number of vortices 

increases.  

4) The time averaged local Nusselt number 

increases with the concentration of nano-fluid 

volume fraction (𝜙𝑝) in unsteady flow regime.   

)b( 

)c( 

)d( 
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Nomenclature  

a  Major Axis 

b  Minor Axis 

𝑇𝑠 Cylinder Surface Temperature 

λ Angle of Inclination 

𝑈∞ Far Stream Velocity 

𝑇∞ Far Stream Temperature 

𝑢  Velocity Component in x-Direction 

𝑣 Velocity Component in y-Direction 

Re  Reynolds Number 

𝜙 Dimensionless Temperature 

𝜓 Stream Function 

𝜁  Vorticity 

𝜐 Kinematic Viscosity 

Pe Peclet Number 

C The Focal Length 

𝜉 Space Elliptical Coordinate 

𝜂 Angular Elliptical Coordinate 

𝜇𝑛𝑓  Nanofluid Dynamic Viscosity 

𝜇𝑓 Base Fluid Dynamic Viscosity 

𝜙𝑝  Nanoparticles Volume Fraction 

𝜌𝑛𝑓 Nanofluid Density 

𝜌𝑓   Base Fluid Density 

𝑘𝑛𝑓  Nanofluid Thermal Conductivity 

𝑘𝑓  Base Fluid Density 

𝛼𝑛𝑓 Thermal Diffusivity 

ℎ Convective Heat Transfer Coefficient 

𝑁𝑢 Local Nusselt Number 

Nu
—

  Average Nusselt Number 

𝐿  Ellipse Perimeter 
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