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ABSTRACT 

Deformation monitoring is a kind of continuous recording positions (horizontal and vertical coordinates) 

precisely regardless the deformation pattern and instrument used. In general, a deformation monitoring network 

can be designed using the trial and error method or analytical methods such as linear programming and nonlinear 

programming. Recently, a deformation monitoring network may also be designed by heuristic optimization 

algorithms such as Evolutionary Algorithms (EAs), Particle Swarm Optimization (PSO) and Simulated 

Annealing (SA).  

In this paper, heuristic optimization algorithms such as SA and PSO are investigated to design the 

deformation monitoring networks. The results proved that both SA and PSO are able to determine an optimal 

design of deformation monitoring and these can used as alternative methods in place of the traditional 

optimization techniques with high efficiency. 

 

 ,مكن ان تهدد المنشأة مع مرور الزمن للمهندس الإنشائي إذ تسمح له بتقدير مدى الخطورة التي ي المنشآت ذو فائدة عظيمة قياس تشوهات تعتبر
ون ذو لذا يجب اخذ احتياطات كبيرة جدا أثناء إجراء القياسات لان مقدار التشوه صغير نسبياً وعلى المهندس الذي يقوم بإجراء القياسات أن يك

شبكات الجيوديسية" من أفضل الطرق خبرة واسعة في هذا المجال. ولقد ثبت أن الطرق الجيوديسية المصحوبة بأرصاد وتحليلات دقيقة "ال
الشبكات الجيوديسية من أهم الأعمال التي تشغل بال القائمين بالأعمال المساحية   المستخدمة لدراسة ومتابعة مثل هذه التشوهات. ويعتبر تصميم

الضروري إستخدام هذه الطرق  أصبح من ومع تطور الطرق الرياضية ودخول الطرق الإستكشافية لحساب المتغيرات المطلوبة عند التصميم
الجيوديسية وقد تم في تصميم الشبكات   وفي هذا البحث استخدمت طريقة محاكاة الصلب وطريقة تحسين سرب الجزيئات .كبديل للطرق التقليدية

 يمها بطريقة تقليدية مسبقا .تصميم إحدي الشبكات الجيوديسية والتي تم تصمفي عمل مقارنة بين هاتين الطريقتين والطريقة التقليدية للتصميم 
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1. INTRODUCTION  

Whenever any stress is applied to an object or a 

surface, this object or surface might be prone to 

changes in its shape and form, also known as 

deformations (e.g. elongation, compression or 

distortion). Any object, natural or man-made, 

undergoes changes in space and time. Being sure is 

very important that the movement of an engineering 

structure, which serves the human life of today's 

modern world, are exhibiting safe behaviors. So, a lot 

of deformation studies for determining and analyzing 

kinds of engineering structures are implemented. 

Since the results of deformation surveys are directly 

relevant to the safety of human life and engineering 

surveying, recently deformation analysis has become 

more important.  

There are several techniques for measuring the 

deformations. These can be grouped mainly into two 

as: geodetic survey, which include conventional 

(terrestrial such as precise leveling measurements, 

angle and distance measurements etc.), 

photogrammetric (terrestrial, aerial and digital 

photogrammetry), satellite (such as Global 

Positioning System-GPS, InSAR), and non-geodetic 

techniques using lasers, tiltmcters, strainmeters, 

extensometers, joint-meters, plumb lines, 

micrometers etc. The major motivation of this study 

is geodetic methods.   

One of the main aims of geodesy is detection of 

the deformations imposed on an object or an area 

which is characterized with points of a geodetic 

network. Since it is essential to detect deformations 

for many purposes (monitoring plate tectonics, 

determination of global datum, taking precautions for 

a construction which may be under damage, etc.), 

many considerable efforts and investigations have 

been performed on deformation analysis (Kavouras, 

1982; Chen 1983; Chrzanowski et al. 1983). 

Before  any deformation measurement 

campaign is started, the geodesists should know 

about the result of their work according to the set 

objectives. This leads to the need for the optimization 

and design of deformation monitoring schemes. 
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Essentially, the purpose for the optimization and 

design of monitoring schemes is to prevent the 

deformation measurement campaigns from failing. It 

enables us to make decisions on which instruments 

should be selected from the hundreds of available 

models and where they should be located in order to 

estimate the unknown parameters and achieve the 

desired criteria derived from and determined by the 

purpose of the monitoring scheme (Kuang, 1996).  

There are, however, significant differences in the 

design problems in positioning networks versus 

monitoring networks (Kuang, 1991). The 

classification of the optimization problems (design 

orders):  

a) Zero Order Design (ZOD): It is the search for an 

optimal datum. But here in the deformation 

monitoring network there is no ZOD problem. 

b) First Order Design (FOD): It involves the 

geometric shape of the network including the 

optimum number and location of the geodetic 

stations. 

c) Second Order Design (SOD): It deals with the 

determination of the weights of network 

measurements. 

d) Third Order Design (THOD) Problem: 

Improvement of existing networks might be very 

useful for monitoring networks. 

Traditional techniques have been applied to 

geodetic problems in the past. Cross and Thapa 

(1979) invistigated the design of leveling networks 

using linear programming. Linear programming was 

also used for the design of monitoring network by 

Benzao and Shaorong (1995). On the other hand, 

some optimization techniques based upon heuristic 

have been started to be used recently in geodetic 

science such as Evolutionary algorithms (EAs), 

Simulated annealing (SA) and Particle swarm 

optimization (PSO) algorithms. 

The major motivation of this study as the subject 

of this paper is to solve the SOD problem using 

heuristic algorithms and make a comparison between 

the results of using these algorithms and the previous 

results of using the traditional method for the same 

deformation network in Kuang, 1991.   

2. Observing Campaigns 
If the geodetic observables involved in a 

campaign can be considered in a network without a 

configuration defect, then the vector of observations, 

can be related to the unknown coordinates, x, of the 

points or stations involved by: 

L = Ax + v                        ....................... (1)  

Where:  

L is an n-vector of observations; x is a u-

vector of unknown parameters,  

v is an error vector and A is the design matrix.  

The least squares estimates of the coordinates are 

obtained by (Vanicek and Krakiwsky, 1986; Amiri-

Simkooei et al. 2012) 

  LPAAPAx
T1T 

          

     .............. (2) 

in which P is the weight matrix of the observables, 

the inverse of their covariance, C. The variance-

covariance matrix,   1T2
ox APAC


 , provides the 

knowledge of the accuracy of the coordinates 

corresponding to the combination of the choice of 

instrumentation and observation techniques, through 

the matrix P, and of the configuration of the network, 

through A. In most instances, 2
o  is taken as unity. In 

an actual adjustment, L in Equation (2) is the 

misclosure vector w = Ax - L since the normal 

equations are non-linear but this is not of 

consequence in the design or pre-analysis. 

The design for deformation monitoring assumes 

that the same configuration and observables will be 

involved in the repetition of a campaign. 

Consequently, the process can be extended to 

consider a pair of campaigns. The deformation can be 

described, in a displacement field, dx, as the 

difference in coordinates between the two campaigns, 

i.e., dx = x2 – x1 , with Cdx = Cx1 + Cx2 , so Pdx = 
1

dxC
 , and campaign 2 following campaign 1. This 

displacement field would be the "observed" 

displacement field since it results from measurements 

and its displacement components are located only at 

points involved in the network of observables. The 

observed displacement field is related to the 

deformation model parameters, c, through (Secord, 

1995):  

dx + v = Bc                  .......................... (3) 

where: 

B : is a deformation matrix with its elements 

being some selected base functions, 

c : is the vector of unknown deformation 

parameters. 

By the modeling design matrix, B. The least 

squares estimates of the deformation parameters are 

then obtained from (Kuang, 1991; Secord, 1995): 

  dxPBBPBc dx
T1

dx
T 

  ...............(4) 

With the covariance matrix of the parameters, 

  1

dx
T

c BPBc


 . 
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For design purposes, the covariance of the 

deformation parameters can be related directly to the 

covariance of the observables by combining the 

above to yield: 

 

  11TT
c BACAB.2c

   ....................(5) 

By specifying the type of instrumentation and the 

observation techniques, the elements of C
-1

 are 

defined (C
-1

 = P in Equation (2)). A appendix (A), a 

MATLAB implementation of the model in Eq. (5) 

"computation of an initial covariance of the 

deformation parameters".   

Criterion matrices are very adequate tools to set 

up objective function. Let us consider the case in 

which a criterion matrix 
c
cC  for deformation 

parameters has been chosen as the precision criterion, 

the design problem then seeks an optimal weights 

such that it can be best approximated by Cc, i.e., 

(Kuang, 1991; Kuang 1996; Yetki et al. 2008 and 

2011; Baselga, 2011) 

  min)C()C(SQRT

i j

2

ijcij
c
c  ......(6) 

This approach to design can guide in selecting 

the instrumentation, the techniques of observation, 

the location of the points, and the deformation model. 

In the present study, some constraints can be put on 

the weights to be obtained using intelligent 

optimization techniques. 

3. Heuristic Optimization Algorithms  
The word “heuristic” was initially coined by the 

Greeks; its original form was heuriskein, which 

meant “to discover”. Today, the term is used to 

describe algorithms that are effective at solving 

complex problems quickly. In such problems the 

objective is to find the optimal of all possible 

solutions, that is one that minimizes or maximizes an 

objective function. The objective function is a 

function used to evaluate a quality of the generated 

solution (Eq. 6). The successful performance of these 

optimization techniques have made it applicable to 

many other problems in geodesy and geodynamics.  

Recently, optimization problems for deformation 

monitoring networks may be solved by heuristic 

optimization techniques such as Evolutionary 

algorithms (EAs), particle swarm optimization (PSO) 

and simulated annealing (SA). 

A basic strategy for an heuristic as applied to 

design the monitoring networks could be as follows: 

a) Choose an initial parameters, 

b) Swap two of the objective functions to make 

the objective of a lower value 

c) Repeat step 2 until no improvements can be 

made.  

The major goal of this study is solving the 

mathematical model in Equation (6) for a pre-solved 

example in Kuang, 1991 which has been solved using 

traditional technique, using SA and PSO, then 

compare the obtained results from SA and PSO with 

the results of Kuang, 1991. 

3.1 Simulated Annealing (SA) Method 
Originally, the concepts of simulated annealing 

were heavily inspired by an analogy between the 

physical annealing process of solids and the problem 

of solving large combinatorial optimization 

problems. 

The method SA is one of the most suitable for 

large-scale optimization problems, especially when 

there is a global extremum which is to be determined 

among many other poorer local extrema. The method 

is based on the work by Metropolis et al. , 1953, 

although many essential contributions (e.g. 

Kirkpatrick et al. 1983; Černỳ (1985) have given 

form to the present algorithm. 

The basis of the SA method is an analogy with 

thermodynamics. At high temperature the particles of 

a body move freely in a relatively wide range. As it is 

cooled, mobility decreases: the particles are still able 

to move, but within smaller boundaries. When 

temperature decreases, so does mobility and, 

provided the cooling is slow enough, the particles are 

able to arrange themselves in states of increasingly 

lower energy, leading eventually to the state of 

lowest energy, i.e., crystalline pattern (i.e. the global 

optimum state) (Baselga, 2011 ; Ranjbar and Mosavi, 

2012). 

Following this ability of nature to find the 

minimum energy state of the system, it is possible to 

derive an algorithm that implements the basic 

features of the process and is adapted to the particular 

optimization problem. 

The SA method was independently described by 

Scott Kirkpatrick, C. Daniel Gelatt and Mario P. 

Vecchi in 1983 (Kirkpatrick et al., 1983), and by 

(Černý.V, 1985). The method is an adaptation of the 

Metropolis-Hastings algorithm, a Monte Carlo 

method to generate sample states of a thermodynamic 

system, invented by M.N. Rosenbluth and published 

in a paper by (N. Metropolis et al., 1953).  

3.1.1 Simulated Annealing Process: 
The annealing process can start from any initial 

state in the domain of interest. According to the 

selected objective function (Equation 6), the energy 

of the current state E0, is calculated. Then a 

constraint-based new state is generated from the 

http://en.wikipedia.org/wiki/Metropolis-Hastings_algorithm
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Monte_Carlo_method
http://en.wikipedia.org/wiki/Marshall_Rosenbluth
http://en.wikipedia.org/wiki/Nicholas_Metropolis
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current one, with energy of E1. Let ΔE be the energy 

change state, ΔE= E1- E0. The next state is decided 

according to the Metropolis criterion (Kirkpatrick et 

al., 1983). If the new state is better then the current 

one  (ΔE ≤ 0), it is accepted unconditionally and 

becomes the next current state. otherwise (ΔE > 0), 

the new state is not rejected outright but accepted 

with a certain probability (Ranjbar et al. 2012). 

For more detailed information on the simulated 

annealing method, refer to more specific sources in 

the literature (e.g., Van Laaarhoven, 1987; Paradalos 

and Romeijn, 2002; Berne´ and Baselga, 2004). A 

MATLAB SA code was developed to optimize the 

SOD problem by Baselga 2011   

3.2 Particle Swarm Optimization (PSO) 

PSO deals with problems in which a best 

solution can be represented as a point or surface in an 

n-dimensional space. The main advantage of swarm 

intelligence techniques is that they are impressively 

resistant to the local optima problem. PSO was 

originally designed and introduced by Eberhart and 

Kennedy in 1995 based on social intelligence of a 

group of birds or fishes (Kennedy and Eberhart, 

1995; Shi and Eberhart, 1998; Kennedy and Eberhart, 

2001). Compared with other optimization algorithms, 

the PSO is more objective and easily to perform well, 

it is applied in many fields such as the function 

optimization, the neural network training, the fuzzy 

system control, etc. 

In PSO algorithm, each individual is called 

“particle”, which represents a potential solution. The 

algorithm achieves the best solution by the variability 

of some particles in the tracing space. The particles 

search in the solution space following the best 

particle by changing their positions and the fitness 

frequently, the flying direction and velocity are 

determined by the objective function. 

In binary PSO, a population (swarm) of birds 

(possible solutions or individuals or particles) is 

initialized randomly with values of {0,1}. It means 

each particle is a combination of one and zero which 

indicate the presence or absence of corresponding 

coefficient in the cost function respectively (similar 

to the chromosome). These particles are represented 

as the current positions (p). Then the fitness values 

of these particles are calculated using the cost 

function (Equation "6"). Based on these fitness 

scores, the best positions of each particle (PBest) 

and the global best position of all particles (GBest) 

are determined. In an iterative process, the velocity 

of each particle (v) is updated as below (Yavari et al. 

2012): 

vij(t +1) = w(t). vij(t)+C1 r .[GBesti (t)-

Pij(t)]+C2.r2.[PBest i (t)-Pij(t)]  . . . . . . . . . . (8)  

where :  

i is the index of particle in the population; 

j: is the index of bits in the binary string of 

each particle; 

t is the iteration number; 

r1 and r2 are two uniform random values in 

[0,1]; 

C1 and C2 are two constant acceleration 

coefficients and 

w(t) is time varying inertia weight. 

A nonlinear inertia weight (w) is used to adjust 

the effect of the current velocities in computation of 

the new velocity values as: 

t

tt
.)ww(w)t(w max

minmaxmin


  .......(9) 

where :  

wmax and wmin are two constant 

experimental parameters, and 

tmax: is the maximum number of iterations. 

Once the velocity for each particle is 

calculated, each particle’s position is updated by 

applying  the new velocity to the particle’s previous  

position: 

xi (t + 1) = xi (t) + vij (t + 1)   ................(10) 

The three steps of velocity update, position 

update, and fitness calculations are repeated until a 

desired convergence criterion is met. 

Currently, several researchers are being carried out 

in the area of particle swarm optimization and hence 

the application area also increases tremendously 

(Sivanandam and Deepa, 2008; Doma and Sedeek, 

2012; Doma, 2013). Sedeek 2012 wrote PSO 

MATLAB code for SOD of deformation geodetic 

networks as Appendix A in his Thesis.   

4. Applied Case Study: 

As shown in Fig. (3), the network consists of 6 

points (according to Kuang, 1991). The simulated 

approximate coordinates of all the network points are 

given in Table (1). 

Assume that the deformation model to be 

detected includes a homogeneous strain field over the 

whole area plus single point movements of points # 

3, # 4 and # 5. That is, the vector of deformation 

parameters to be detected can be expressed as: 

T
yxyxyxyxyx )dddddd(e

554433
 ..(11) 
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Figure (3): The two-dimensional free trilateration 

monitoring network 

Where dxi, dyi (i= 3, 4,5) represent the 

displacements of points # 3, # 4 and # 5 in x-and y-

directions respectively, and yx ,   and xy the 

normal strain and shear strain parameters 

respectively. The deformation model can be 

expressed as: 

and6,2,1ifor
yxv

yxu

iyixyi

ixyixi











   (12) 

5,4,3jfor
yxdyv

yxdxu

jyjxyjj

jxyjxjj











   (13) 

One can compute the deformation matrix with its 

elements being some selected base functions (B) 

from Equations (12 and 13), where: 





































vov

uou

o

o

c)tt;z,y,x(B

c)tt;z,y,x(B

)tt;z,y,x(v

)tt;z,y,x(u
    (14) 

We assume that the displacements have to be 

determined with a standard deviation of 0.71 mm. 

while the strains with a standard deviation of 0.14 

ppm. The following diagonal matrix will be used as 

the precision criterion matrix, i.e., 

Ce = 2 . Diag [(0.5 mm)2  . . . . . (0.5 mm)2   . . . . .   (0.1 ppm)2]          

 

Table 1. The simulated approximate coordinates of 

network points 

Approximate coordinates 
Point 

Y(m) X(m) 
1625 1125 1 
375 4625 2 

4625 6250 3 
5875 3250 4 
1500 3375 5 

4625 4375 6 

The PSO parameters used in this research are 

shown in Table (2). These parameters are selected 

based on Yavari et al. 2012 and also experimentally 

to balance the global and local search of PSO.  

However, it should be noticed that PSO is rather 

stable to the mild changes of these parameters.  

Table (2): PSO parameters 

Parameter Value 

No. of particles 30 

Iteration 300 

(C1) 1.75 

(C2) 1.1 

The target function for precision is then used to 

best approximate the above criterion matrix is Eq. 

(6). After the optimization solution process is done 

by using heuristic algorithms (both PSO and SA), the 

optimization results obtained from optimization 

model are listed in Tables (3 and 4) and Fig. 2. 

At first, Table (3) lists the optimal weights 

using the traditional method (Kuang 1991) and both 

PSO and SA techniques. From this table one can see 

that, the numerical summation of the squares of the 

weights using traditional method equal 436.803, , 

but, the summation of the squares of the weights 

which had been obtained from intelligent techniques 

(both PSO and SA) = 377.109 and 337.653 

respectively. This means that the heuristic techniques 

can be used an alternative method to design a 

deformation network with high efficiency. Figure (2) 

shows the performance of three algorithms. From 

Table (3), we can see the chosen parameters for PSO 

Algorithm. 

Finally, At Table (4) we can see the Goodness of 

fitting of the precision criteria for traditional 

technique (from Kuang, 1991), PSO technique and 

SA technique, the precision criteria are less than and 

close to the required value for all used techniques. 
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Figure (2): The performance of traditional, PSO and SA 

techniques in designing deformation network 
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Table 3. The desired weights of the observations obtained by 

traditional method (from Kuang, 1991) and the heuristic 

techniques (both PSO and SA). 

Obser. Optimal weights 

from to 

Traditional 
method 

(Kuang, 1991) 

Heuristic techniques 

PSO 

technique 

SA 

technique 

from to P P
2 

P P
2 

P P
2 

1 2 5.02 25.16 5.17 26.68 5.82 33.81 

1 3 2.84 8.0407 2.72 7.381 1.54 2.384 

1 4 4.43 19.617 4.54 20.633 5.00 25.043 

1 5 2.46 6.072 2.59 6.7398 2.29 5.238 

1 6 5.11 26.131 5.35 28.605 6.00 36.01 

2 3 4.83 23.331 5.05 25.463 4.87 23.692 

2 4 3.11 9.680 1.67 2.794 2.03 4.129 

2 5 1.70 2.8975 1.63 2.668 1.84 3.379 

2 6 5.52 30.44 6.05 36.62 6.03 36.988 

3 4 9.47 89.63 9.59 91.876 8.48 71.945 

3 5 3.13 9.8178 3.25 10.571 3.98 15.857 

3 6 7.64 58.364 6.75 45.745 4.94 24.393 

4 5 1.21 1.4719 1.55 2.386 2.99 8.911 

4 6 10.9 119.86 7.89 62.272 5.71 32.651 

5 6 2.51 6.2813 2.58 6.674 3.72 13.82 

Sumations 69.93 436 66.3 377.1 65.24 337.6 

Where: 

P.: the optimal weights and 

 

 

 

 

 

 

Table (4): Goodness of fitting of the precision criteria for 

both linear programming (L.P.) method and the proposed 

PSO method. 

Parameters 
Required 

precision 

Obtained Precision 

 Precision 
from 

traditional 
technique 

Precision from the 

heuristic techniques 

PSO  SA  

dx3 2.83 mm 0.52 mm 0.53 mm 0.57 

dy3 2.83 mm 0.71 mm 0.71 mm 0.71 

dx4 2.83 mm 0.66 mm 0.68 mm 0.71 

dy4 2.83 mm 0.59 mm 0.60 mm 0.58 

dx5 2.83 mm 0.68 mm 0.67 mm 0.67 

dy5 2.83 mm 0.65 mm 0.63 mm 0.54 

εx 5.66 

ppm 

0.14 

 ppm 

0.14 

ppm 

0.14 

ppm 

εxy 5.66 

ppm 

0.10 

 ppm 

0.11 

ppm 

0.10 

ppm 

εy 5.66 

ppm 

0.11 

 ppm 

0.11  

ppm 

0.11 

ppm 

5. Conclusions 
Deformation measurements are of major 

importance in the board spectrum of activities 

covered by surveying engineering. Essentially, there 

are both practical and scientific reasons for the study 

of deformations. Practical reasons include checking 

the stability of a structure and detection of the 

precursors of earthquakes or failure signals of 

structures. Scientific reasons include a need for a 

better understanding of the deformation mechanism 

and to establish prediction methods. Through the 

study of deformation measurements our knowledge 

about behavior of deformable bodies will be greatly 

improved. 

This paper presents an investigation on the 

efficacy of particle swarm optimization (PSO) and 

simulated annealing (SA) to solve complex 

optimization problems, for the SOD problem, make 

decisions on which instruments should be selected 

from the hundreds of available models a process, in a 

deformation network while satisfying the desired 

precision criteria at minimal cost. The algorithms are 

tested on a deformation network which was solved 

using traditional method by Kuang 1991. The results 

have shown that the heuristic optimization algorithms 

have yielded better results than the classical method 

in solving the SOD problem. 
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