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ABSTRACT

The complex nature for steelmaking processes makes the classical Statistical Process Control
{SPC) methodologies are optimal when used to monitor and control steam boiler generation used to
supply the required steamn for vacuum degassing processes. These processes include a large number
of variables that need to be monitored and controlled, while classical SPC requires a control chart for
each variable, Thus the effect of one variable can be confounded with effects of other correlated
variables. Such a situation can lead to false alarm signals. Univariate control charts are also difficult
to manage and analyze because of the large numbers of control charts of each variable. An
alternative approach is to construct a single multivariate control T? chart that minimizes the
occurrence of false process alarms as well as monitors the relationships between the variables, and
identifies real process changes not detectable using univariate charts. It is necessary to
simultaneously monitor and control these variables to achieve optimal vacuum degassing process
performance to remove harmful gases from the molten steel before casting. This represents the main
concern of the presented paper, This paper also studies the application of univariate and multivariate
control charts in the field of steel industry. The performance analysis for each one is studied using
the Average Run Length (ARL). A comparison of the univariate out-of-control signals based on the
multivariate out-of-control signals is also made to illustrate the efficiency of the Hotelling's T
statistics.
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1. INTRODUCTION When these wvariables are correlated, a more
In large and complex manufacturing systems, appropriate approach would be required to monitor

statistical methods are used to monitor whether or not
the processes remain in control. Control charts are
widely used as process monitoring tools, primarily to
detect changes in the process mean or in its standard
deviation which can indicate a deterioration in
quality. Quality control problems arise when
processes or products with two or more related
quality variables are to be monitored or centrolled.

them simultaneously. On-line statistical process
control is the primary tool traditionally used to
improve process performance and to reduce variation
of key parameters. Recently, many businesses use
Univariate Statistical Process Conirol (USPC)
(Montgomery [11]} in both their manufacturing and
service operations. Automated data collection, low-
cost computation, products and processes designed to
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facilitate measurement, demands for higher quality,
lower cost, and increased reliability have accelerated
the use of USPC.

However, in many situations the widespread use

of USPC has caused a backlash as processes are

frequently adjusted or shutdown when nothing is
really wrong because the probability of false
positives (Type [ error) is calculated based on USPC.
It also takes little or no account of the multiple tests
that are being performed or the correlation structure
that may exist in the data. It is very likely that these
variables will be correlated due to the large number
of variables collected at a given time. Consequently,
multivariate statistical methods which provide
simultaneous scrutiny of several variables are needed
for monitoring and diagnosis purposes in modern
manufacturing systems. A more appropriate method
of detecting and isolating process faults is to utilize
Multivariate Statistical Process Control (MSPC)
approaches (Wise and Gallagher [20]; MacGregor
and Kourti, [10).

A great deal of work on multivariate statistical
control procedures was performed in the 1930's and
in the 1940's by Hotelling [5], who has developed the
T? procedure and its extensions to control charts. The
field took a backstage umtil the 1960's, when, with
advances in ‘computer technology, interest in
multivariate statistical quality control was revived.
Many of the concepts of multivariate quality control
techniques are due to Hotelling {5]. Excellent
discussions of these techniques are presented by Alt
[1] and Jackson [G]. A number of related papers were
published in the ensuing years. Jackson [7]
mentioned in his paper that the multivariate
techniques should possess three important properties:
(1) they produce a single answer to the question: is
the process in-control?, (2) has the specified type 1
error been maintained?, and (3) these techniques
must take into account the relationship between the
variables.

This paper deals with both conventional methods
and new approaches that can be used to moniter the
manufacturing processes for the purpose of fault
detection and diagnosis. The main concemn of the
paper is to improve steel quality using statistical
process control techniques to improve the
performance of steam boiler generation, which forms
an important part of a steel manufacturing process.
Also, the performance of univariate control charts
such as Shewhart, EWMA, and CUSUM is compared
with a multivariate contrel chart through the Average
Run Length (ARL). To implement this study,
Qualstat and Microsoft Excel softwares are used.

2. UNIVARIATE CONTROL CHARTS

Statistical Process Control techniques are
employed to monitor production processes over time
to detect changes. The basic fundamentals of
statistical process control and control charting were
proposed by Walter Shewhart [17] in the 1920's and

1930's. The basic Shewhart X - charting for
monitoring both the mean and the variance of a

process, however sensitivity of X - chart to shifts in
the variance is often considered inadequate. So, it is

common to use X - chart coupled with either R chart

or S chart, both of X - R chart or X' - S chart are
uged to monitor changes in the mean and the variance
of the process. Other methods have been proposed to
improve sensitivity to small and moderate — sized
shifts in the mean. In particular, run rules have been
used to signal for unusual patterns on the chart, such
as having eight samples means in a row either all
above or all below the centerline. Page [14] was the
first one-who has suggested the use of a separate set
of control limits, called waming lines, that lie inside
the ordinary control limits. It was proposed that if
two consecutive points fell ouiside the warning lines
it would be sufficient cause for a signal. This
additicnal signal criterion is called a run rule, Run
rules improve the sensitivity, but also increase the
number of false alarms { Champ and Woodall [2] ).

The statistic EWMA is calculated using:
z=Ax, +(1-A)z,, (1)

The control limits of EWMA control chart are;

UCL“H'FLG’.“E%-\/II—(I—-/‘L)HI )
cr = ;z_wﬁ%w/ll—(l_z)”[ @

The tabular CUSUM methed is used to represent
CUSUM control chart for monitoring the process
mean, The tabular CUSUM works by accumulating

derivations from the target ( 2,) that are above the
target with one statistic S, and accumulating
derivations from the target ( 4, ) that are below target
with another statisticS;. The statistics S, and

S,are called one-sided upper and lower CUSUM,

respectively. They are computed (Montgomery [13])
as follows:
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st = maxlo, x; ~ (g + ) +.S}(:‘-D'J “

H =maxlo,(,u0 —B)-x; +S,i'1)J )

where the starting values are 82 = SP =0.

In Equations (4) and (6), & is called reference
value (or the allowance, or the slack value), and it is

often chosen about halfway between the target 1,
and the out-of-control value of the mean g that we

are interested in detecting quickly.
If the shift is expressed in standard deviation units

as gy = py + 60 or(S:Lu] ——po’/a), then X is
one-half the magnitude of the shift or
b)) ]#] - ﬁ()]
L=t 2

2 2

where S, and S, accumulate deviations from the

K= (6)

target value [/ that are greater than K, with both
quantities reset to zero upon becoming negative. If
either S, or S, exceed the decision interval H, the

process is considered to be out-of-control. The
reasopable value for H is five times the process
standard deviation o .

The performance of SPC charts is typically
measured in terms of the run length. The run length is
the number of subgroups from a starting subgroup up
to the subgronp which triggers a signal. The run
length follows the geometric distribution when
observations ™ are independently and identically
distributed dnd control limits are assumed to be
known (Quesenberry [15]). This performance metric

is termed the Average Run Length ARL, where

J is the mean shift in standard deviations. So the
most sensitive charting technique will have a

short ARL; . A false alarm signal is specified by an
ARL,. In addition, it is important to minimize false
alarm signals, even when the process is properly
centered.

Lucas and Saccucci [9] have shown that CUSUM
and EWMA control charts provide faster detection of
small step changes than a Shewhart chart without an
increase in the false-alarm rate. However, previous
searches have shown that exponentially weighted
moving average (EWMA) and cumulative-sum
(CUSUM) charts are better in determining process
mean shifis than the Shewhart chart.

In conjunction with the Shewhart chart for
monitoring the process mean, it is useful to monitor
the three sigma variability for each subgroup of
measurements. The three sigma chart provides
valuable information on the process stability. Ail of
these techniques are unmivariate control charts and
thus only monitor a single parameter or output at a
time. Therefore they cannot detect changes in the
relationship between multiple parameters.

3. MULTIVARIATE CONTROL CHARTS
Quality is generally determined by several quality
characteristics which may be correlated. Multivariate
control charts take this correlation into account in
monitoring the mean vector or variance-covariance
matrix. The first development of a multivariate
control chart was performed by Hotelling [S].
Hotelling's chart uses Hotelling's T statistic to
monitor several quality characteristics
simultaneously with a specified value of ¢t .

Tracy, Young, and Mason [18] presented an exact
method for constructing a multivariate control chart
for use when individnal observations are collected in
the start-up stage of the process. Hawkins [4] stated
that large values of T can also be caused by changes
in the covariance matrix and not just by changes in
the mean vector. He proposed that it is important to
base the constructed control limits on accurate
estimates of the parameters. During the start-up
stage, when using subgroups consisting of individual
observations (i.e, subgroups of size 1) with
measurement variables, the beta distribution should
be utilized to obtain control limits for the T statistic.
Use of the exact distribution is better than employing
approximate F and chi-square distribute ions,
especially when the number of subgroups is small. If
the size of the historical sample is large, it is

common to assume that estimates (X and S) are
equal to the true population parameters z and X.

However, as noted by Tracy, Young, and Mason
[18], that assumption is not necessary in multivariate
charting,

Alt [I] proposed that when the population
covariance matrix is known, Hotelling's statistic is
equivalent to the ,'gz statistic

2 '—1
X=X ) T (X = pg) (M
Also, when t{ = p4,, there is probability ¢ that this

statistic exceeds a critical point of Zﬁ 2> (@ is the

number of variables) so that the averall error rate can
be maintained exactly at the level ¢ by triggering a
warning only when
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Lowry and Montgomery [8] discussed the out-of-
control signals in multivariate confrol charts and

proposed that the performance of multivariate control .
charts in detecting process disturbances tends to ~

deteriorate as the number of monitored quality
characteristics increases. Hawkins [3], as well as
Wade and Woodall [19], uses regression adjustments
for individual variables to nnprove the diagnostic
power of multivariate T charts.

The process being monitored with the Historical
Data Set (HDS) is being available and the parameters
of the underlying multivariate normal distribution are
unknown and must be estimated. The T value
assoctated with X is given by

2ox-x) s\ - ©)

where X and S are the common estimators of the
mean vector and covariance matrix obtained from an
in-control historical data set,

In case of phase II setting for individual, the T
statistic in (9) follows F distribution and the UCL is

computed as

([ ptneD(n-1)
UCL = [-—;J(T_;)-—]F(a’ pnp) (10)

where » is the size of the HDS, p is the number of

variables, and F is the @ th quantile of

a.p,n-p)
F,

piph-p}

In the same time, the data of monitoring Phase I
is used to construct T® control chart as subgroup m
using the equations for the value of 1% and UCL in
equations (11) and (12), respectlvely

-2=(X.' X)S (X1 ) (11)

p(m+n)n-1)
UCL = | ———— |F,
( mn(n—-p) ) (e,p,n—p) (12)

4. STEELMAKING PROCESSES

The process of producing special steel contains
four main processes, The first process is melting in
Electric Arc Furnace (EAF), where scrap and ferro
alloys (raw materials) are added to melt by
generating the arc in (EAF), and adjusting the
required chemical composition by adding ferro
alloys. The second process is the secondary Ladle
Refining Process (LRF) to adjust the required
chemical composition of special steel and to get high

cleanliness degree through desulphurization. In fact,
the secondary refining process is considered as the
last chance for the steelmaker to improve the quality
of producing special steel before casting,.

The third process is Vacuum Degassing (VD) to
remove harmful gases such as Nitrogen (N;) and
Hydrogen () from molten steel by stirring it under
the vacuum condition. The vacuum process condition
is achieved using steam generated by a boiler with a
capacity of 4 ton/hr of steam. This steam is used as a
power to operate a number of pumps to generate
vacuum conditions inside the container of VD
process. The vacuum pressure reaches to less than 1
mbar to suck the harmful gases out of the molten
steel in about 15 min. The last process is to cast the
molten steel in ingot casting or billet casting using
Continuous Casting Machine (CCM).

5. AN APPLICATION STUDY

The present application study is carried out in an’
Egyptian ‘steel industry (ARCO Steel, Sadat City,
Minoufiya) on the boiler of steam generation process
shown in Fig. 1. This process begins by feeding
natural gases as a fuel mixed with air in the
combustion chamber for boiling the water (input to
boiler from deaerator which eliminates oxygen from
the water) to convert it to steam with high pressure.
The high-pressure steam is passed into two passes,
namely; steam accumulator and super heater to
increase the temperature of steam. The steam is
passing to steam header to the vacuum degassing
process. To increase the boiler efficiency and
performance, it has some equipment such as (Rashed

[16] ):

- Deaerator is used to remove oxygen from the
feed water to the boiler. It has a line of steam to
increase the temperature of feed water to boiler
through pressure regulator.

- Economizer is used as a heat exchanger to
transfer the temperature of fume gases from the
boiler to the feed water from the deaerator to increase
the boiler efficiency.

The overall process is controlled by monitoring
seven quality variables of boiler, namely; water level
(W1 %), water input temperature from economizer
(Tuw;), fime gases temperature (Ty), boiler pressure
(Py), accumulator pressure {(P,), steam header
pressure (Pyp), and steam header temperature (Ty,).

In fact, there js a difficulty to reach a vacuum
pressure less than 1 mbar that is required to remove
the harmful gases. This represents a large problem.
Practicaily, this takes a long time (more than 20 min}.

To overcome this problem, initial data about the
seven quality variables are collected to construct
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Phase I of control charts. 125 measurements were

Table 1 Averages and ranges of subgroups
for the boiler process for Phase II.

first collected then were grouped into 25 subgroups.

Table 1 Contiued.

Sub Wl Xbarf 61 | 113.8 |254.2] 2152 | 17.34 j13.88| 1976
Chart] o [ Towi | Tgo | P P, | T 2 ' ' :
roup) o |Towi| Teo | Po | Pa o T 5 1 10 | 35 | 45 | 05| 2
. Xbar| 61.8|117.0] 2594 | 22,0 | 186 | 140 1988 5y |Xbar] 59.8 | 1194 ] 258 | 2184 | 17.26 [13.62] 198
R |30]|10] 30 ] 34 ] 56 ] 00]10 R: 3 1 4 12 123 |39 10110
Xbar| 612 | 120.4| 260.8 | 204 | 16.5 | 13.9 [198.0 gq [Xbar] 594 | 1118 255 | 2046 | 1826 | 13.44]196.2
2 R {40 |1106| 20 | 41 | 44 | 07 | 20 B2 L 8 12 41281 3
: . - : ' i i a5 |Xbar] 606 | 1216 |258.2] 23.06 § 18.62 | 13.92 198
R j40[210] 160 | 1.7 | 46 | 26 | 70 s |Xbar| 604 | 1126 1254.4]19.22 | 1448 | 12.7 {1936
s Xbar|61.6|118.8] 2586 | 210 | 173 | 140 |198.0 R| 5 7 7 47 [ 69 321 12
R is0ls0]| 50 4.1 49 o1 | oo 27 Xbar| 62.6 | 1164 [251.8| 23.3 | 18.16 | 13.94}198.2
Xbarl 612 | 121.4] 2586 | 2096 | 17.1 | 138 |197.4 R} 3 1 8 115119 08 101] 1
5 5 [Xbar| 608 | 1158 |251.8]21.56 | 17.9 |13.88) 198
Ris0ol130| 100} 42 ] 50 ] 1.0 [ 30 =13 7 o T58 T35 oz o
6 Xbar| 602 |1162] 259.6 | 213 | 173 | 139 [1984 by PX0ET 60.8 1115.8P53.2(18.82]15.24112.76195.4
R{20]110] 60 | 3.9 | 49 | 02 |20 R| 6 12 1 9 | 88 {68 (24| 7
, [pourf612]1248 2596 | 202 | 16 | 139 |19 30 o] 60.6 |113.6]257122.08117.86]113.9| 198
R|[s0]wof 70 | 47 | 58 | 10 | 60 R) 4 12 | 4 {3312210 42
: 3y |[Xbar| 606 | 1136|2542} 21.58 | 16.98 |13.74] 198
g Xbar| 61.8]114.4] 258.4 | 2168 | 17.9 | 13.96 | 1996 =17 =15 T35 1521071 2
R|s3)mz])] 1343124 ]01]3
5 Xbar] 61.8) 110 | 252 | 23.38 | 2028 | 14.18 |[99.0 Table 2 Significant linear correlations
R|4 || 18] 2641 0o]3 greater than 0.35
o |oou|623[ 1066 2408 {2084 | 195 [1306 ] 199 # | Variables | R* ] # [Variables) R*
R (651 6 | 7 | 54 | 49 |04 ] 5 LB :h g:;ﬁi 3 TP" ;" gi;;g
2 Ph . 855 Bwi gb A
2.6 | 104.6 | 252. 46| 17. 82 1197.8
g [Roerf 626110462524 | 2146 | 178 | 1382 | 7 3| P | % ) 06324 ] 8] wWilT, | 04254
Rj4] 6| 7141 5 11113 2 | P | 7 | 06294 | 9 [ wi]P | 04091
" Xbar| 63.2}1074] 2524 | 207 | 17.8 | 13.94 | 1982 s P 1T L oc2z7 [10] wi| P | 03695
R12]5 9 | 64 | 46 | 03 | 1 * Coefficient of correlation
13 Xbar| 63.4{105.6| 253.2 | 22.04 | 18.18 | 13.96 | 1984
R|a] 4 3 26 | 36 | o1 1 Also, in Phase II (monitoring phase), 155
bl 18 111041 253.8 | 21.12 | 16.08 | 13.74 | 197 measurements were collected into 31 subgroups as
14 shown in Table 1.
R{6}] 6 7 5 7 1215
R)51 6 g | 4 61 1 0.1 1 0.35) are summarized in Table 2,
Xbar| 614 | 112.6] 256.8 | 21.46 | 158 | 13.66 |197.6 ’
16 . 6. RESULTS AND DISCUSSIONS
R{4] 9 3 23 1 36 | 14 | 4 >
~oteos ] 115 12556 V1964 | 1552 | 13.96 | 198 Initially, the collected data must be filtered to
120802, il Rl i : obtain a preliminary data set from which the
Ris5j 7] 6 |13]2230]10F9 Historical Data Set can be constructed. A preliminary
8 Xbar| 61.6 | 114.8] 254 | 192 | 14.12 | 12.86 |1954 data set should be thoroughly examined using
Rfs] 10 3 47 1 a1 | 29| 2 procedures and graphical tools. A graph of the
Xbar| 59.4 | 113.8| 259 | 1848 | 13.66 | 12.68 | 193 individual .vana.xbles over specified period of time is
19 =13 15 5 32 T a7 122 1 9 presented in Figs. 2-a to 2-g for the seven quality
. . . variables, which indicatc some patterns. Fig. 2-a
g0 |Parj604]1138) 258 22.62 | 17.9 |13.92 11982 indicates that the water level W1 % is initially stable,
RI1[16] 6 18 127011 while in Fig. 2-b the boiler water input Ty is
whar| 61 | 115 | 258 | 2146 | 16.98 | 13.96 | 1984 increased with time. The figures of other variables
2l x| 5 0 5 33 | 34 | 02 | 2 are indicating that they are slightly stable with time.
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6.1. Shewhart Control Charts -

Figures 3 to 9 show the seven Shewhart control
charts for the subgroup of the boiler variables. In Fig.
3, X bar and R control charts of W1 % are
constructed. It is clear that there is indication that X

bar and R charts are in-control, whereas the variable .
Tywi is unstable as shown in Figs. 4 and 5. The Ty ¢

and Ty, control charts have three zones A, B, and C.
In zone A, the process is started with out-of-control
case. The investigation of this zone indicates that at
subgroup No. 3 (Fig. 4) the servo-motor, which is
responsible of controlling the flow of natural gases
used as a fuel in boiler, is improperly. The servo-
motor is temporarily repaired until ordering new one
at subgroup No. 9. At this subgroup in Fig. 5, Ty is
decreased due to increasing both of boiler load and
water level (W1 %). At the same time, the pressure
regulator is manually opened, consequently the steam
flow is increased to deaerator at zone A. This leads to
an increase in boiler water input temperature Tiw. In
zone B, there is no indication for out-of-control
signals until subgroup No. 15. Also, in zone C the
trend of the boiler water temperature Ty, is graduaily
increased the UCL.

After investigation, it has been found that as the
result of increasing the steam consumption in VD
process, due
to the leakage in the seal of the container of VD
process, the boiler operator opens the pressure
regulator manually to increase the quantity of steam
flow to the deaerator to improve the boiler efficiency.

As shown in Fig, 6 for boiler pressure Py, out-of-
control signals in subgroups No.18, 19, 26 and 29 are
detected due to increasing the steam consumption in
VD process and consequently Py is decreased..On
the other hand, accumulator pressure P, steam
header pressure Py, and steam header temperature T,
in Figs. 7, 8 and 9, respectively, out-of-control
signals are noted in subgroups 3, 18, 19, 26, and 29.
A failure is found in servo-motor at subgroup No. 3
and consequently the air to fuel ratio is uncontrolled.

Some corrective actions were taken as a result of
detecting the out-of-control signals during the
monitoring phage (Phase IT) including:

e Install new servo-motor for conirolling the
Air/Fuel ratio,

¢ Initiate detailed work instruction for boiler
process,
Prevent leakage in VD container,
Install water level measure with signal at
specified level of the accumulator, and

e  Repair the pressure regulator.

After carrying out these corrective actions, 24
subgroups were collected for each variable and hence
X bar and R charts could be constructed. In this case,

no indication of out-of-control signals is found, the
performance of VD process becomes stable, and a
1 mbar or less could be reached through the required
time.

.6.2. EWMA Control Charts
4 Practically, weighting parameter having A= 0.1,

the width of the control Limits L = 2.7, and 2z, equals

to the grand mean X of the variable, were chosen
and consequently EWMA is constructed for the 31
subgroups with each of size five.

The EWMA control chart of the water level
Wl % shown in Fig. 10, indicates out-of-control
signals at subgroups Nos. 13, 14, 15, and 16. On the
other hand, EWMA of the boiler water input
temperature Ty,; indicates that Ty.; is  unstable as
shown.in Fig. 11.  The subgroups Nos. 5,6, 7, 8
and 9 are ot of UCL. There is also a gradual
decrease at subgroup No. 7 until subgroup No. 15.
This leads to subgroups Nos. 13, 14, 15, 16 and 17
are out LCL. On the contrary, the EWMA of gas
boiler temperature Ty, in Fig. 12 indicates a gradual
increase in the mean. The EWMA of boiler pressure
Py, accumulator pressure P, and steam header
temperature Ty, are in control conditions as shown in
Figs. 13, 14, and 16, respectively. Finally, EWMA of
steam header pressure Py, has out-of-control signal at
subgroup No.1 as shown in Fig. 135.

6.3. CUSUM Control Charts
S, and S, of cach variable were calculated for

the 31 subgroups with each of size five. There is no
indication of out-of-control signals for steam header
pressure Py, On the contrary, there are out-of-control
signals of the variables water level W1 %, boiler
water input temperature Ty, gas temperature Tgp,
boiler pressure Py, accumulator pressure P, and
steam header temperature T,

6.4. Multivariate T> Control Charts

Calculations of Hotelling T* statistic require an
estimate of the mean and covariance matrices after
obtaining the historical data set for all the seven
variables. 125 measurements are chosen as a Phase 1.
The procedure was to comstruct the Hotelling T
statistic as 155 measurements as individuals T and
31 subgrouzps with five measurements for each ag
subgroup T" for Phase II (monitoring phase).

Figures 17 and 18 show T2 charts for individuals
and subgroups respectively. In fact, T chart for

individuals has  out-of-control  signals af

measyrements numbers 14, 15, 21, 70, 76, 86, §7, 90,
92, 93, 94, 117, 129, 130, 133, 139, 141, 143, and
144. On the other hand, the subgroup numbers 1, 8,
11, 13 and 15 are out-of-control at T* chart for
subgroups.
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7. PERFORMANCE COMPARISON

In case of Shewhart control chart with three sigma
limits, the probability that the measurement exceeds
its control limits is 1/ARLg (1/370 or 0.0027). The
probability that the process is within the 3 sigma

limits is simply (1 - 1/ARLg) or 0.9973. In general, .

for a process consisting of p statistically independent
parameters being monitored, the probability that all p
parameters can be plofted in 3 sigma control limits
when they are in control (Montgomery {12] ), i.e.

P{all p means plot in control}= (0.9973Y (13)

In the case of seven variables (p=7), the

detection probability is reduced from 09973 to
0.9813. This means that ARL, of seven variables
have been reduced from 370 (single uncorrelated
univariate chart) to 54. It is important to note that
equation (13) assumes that seven variables are
statistically independent. It is more typical that the
variables are partially dependent which could
produce an even smaller ARL, = 54.

For monitoring and control of the steam
generation process, it is helpful to compare these
separate techniques for determining out-of-controf
signals. At the beginning, the total number of out-of-
control signals generated by the seven univariate
control charts in phase II were counted. Secondly,
counting the out-of-control signals is indicated using
a single multivariate control chart based on Hotelling
T2 statistic with individuals and subgroups.

7.1. Performance Comparison of Univariate
Control Charts '

Table 3 gives the out-of-control signals of
univariate control charts that were detected from the
31 subgroups of the studied different variables. Also,
it shows the number of out-of-control signals of each
variable for Shewhart, EWMA, and CUSUM control
charts. As shown in Fig. 19, out-of-control signals
detected by Shewhart control chart are higher than
both EWMA and CUSUM in all variables. This does
not mean that Shewhart has better performance than
EWMA and CUSUM. In fact, Shewhart control chart
has high false alarms signals than EWMA and
CUSUM. Consequently, it is believed that Shewhart
control chart generates the highest incidence of false
alarm signals and do not provide a clear indication of
the known or assignable process shifts. The out-of-
control signals of both EWMA and CUSUM control
charts are slightly the same.

The performance comparison of EWMA and
Shewhart is clear in Fig. 20. The ARL of two
EWMA'’s have been presented for comparison.

Keeping in mind that the smaller the out-of-
contro! ARL for a control chart the better it is, Fig.
20 shows that EWMA is more effective for small

shifts, but less or equally effective as the Shewhart
control chart for bigger shifts. That is the EWMA
importance as far as monitoring is concerned. When
small shifts detection is desired EWMA. is the best
choice.

Table 3 Detected out-of-control signals
from 31 subgroups.

Cg;;‘t’l Shewhart | EWMA | CUSUM
Wi | # 0 4 2
% 1% 0 12.9 6.5
T 12 23 10 9
% 742 32.3 29
. IL# Io 7 10
B 323 22.6 32.3
P 4 p) 1
¥ % 12.9 6.5 3.2
e 5 ] 2
* [ % 16.1 0 6.5
b | 10 0 0
b Mo | 323 -~ 0
N 7 4 1
"% 22.6 12.9 3.2

7.2. Performance Comparison of Multivariate
Control Charts ‘

7.2.1. Comparison of T° with Individuals and
Subgroups

It is helgful to compare the two separate
techniques (T° with Individuals and Subgroups) for
determining out-of-control signals. In Fig. 20,
number of out-of-control signals with subgroups
equals 26 signals, while at T? with Individuals equals
10 signals. Subgroups number 3, 5, 14, 16, 18, 19,
24, 26, 27, and 29 are totally signaled in both cases,
but the other 16 subgroups are not signaled at T with
individuals. Tt is clear that the T with subgroups has
higher performance than individuals.

7.2.2. Comparison of T* Subgroup and Shewhart
Control Charts

The number of out-of-control signals of Shewhart
control chart for each variable are summed for each
subgroup. Figure 22 Shows that the number of out-
of-control signals detected by Shewhart and T
control charts are 61 and 26, respectively. It is
noticed that five subgroups are signaled by the
Shewhart control chart and not detected by T* chart,
and only one subgroup (No.15) is not signaled by
two different charts,

8. CONCLUSIONS

In this paper, the process of steam generation
boiler, in steelmakirg, was monitored using
conventional univariate control charts (Shewhart,
EWMA, and CUSUM) and a single multivariate
control chart. Seven variables of boiler water level
W1 %, boiler water input temperature Ty, fume
gases temperature Ty, accumulator pressure P,
steam header pressure Py, and steam header
temperature Ty, were monitored, Based on these seven
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univariate control charts, a high frequency of out-of-
control signals was generated. Consequently, the
ability to clearly identify process shifts of the boiler
was ambiguous. Close examination of the seven
variables showed several cross-correlations.

There are situations in which an out-of-control
signal goes undetected using EWMA charts, whereas
it is detected when Shewhart charts are used. An
explanation is that if the process change is a
temporary shift that affects only one point, then we
would expect the Shewhart chart to do better at
detecting this shift. If the process is going through
sustained small changes, then we would expect
EWMA chart to do better.

Based on the multivariate Hotelling's T2 statistic
control chart, the frequency of false alarm signals
was reduced, The technique aiso demonstrated the
ability to detect process shifts, This single
rultivariate chart is also simpler to manage and
interpret as compared to the seven individual
univariate charts.

Out-of-control signals based on Hotelling's T
statistic show the least occurrence of false signals.
It is also interesting that all Shewhart signals are
included in the Hotelling's T* with subgroups chart.
This illustrates the efficiency of a single multivariate
chart for monitoring the entire set of boiler variables,

Finally, corrective actions are made to overcome
some problems of steelmaking process, and a
significant  improvement is atfaineded. The used
control charts reflect this result. After carrying out
these corrective actions, 24 subgroups were collected
for each variable and hence X bar and R charts could
be constructed. In this case, no indication of out-of-
control signals is found, the performance of VD
process becomes stable, and a 1 mbar or less could
be reached through the required time.
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