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. . . Abstract . . .  

The problem of natural convection from an elliptic tube with its major axis vertical and. 
i heated uniformly is investigated. The study is based on the solution of full governing 

equations without boundary layer simplifications. The study focuses on the effect of the 

I main controlling parameters on both flow and thermal fields. The controlling parameters 
! are the modified Rayleigh number, Ra Prandtl number, Pr and axis ratio, Ar. The Ra is 

considered up to lo7 , the Pr is considered up to 10 while the axis ratio is varied from 
0.05 (almost flat plate) to 0.998 ( almost circular cylinder). Results are presented for the 
local and average Nusselt numbers and local and mean surface temperatures. The study 
revealed that as Rayleigh number andlor Prandtl number increase the average Nusselt 
number increases, resulting in a decrease in mean surface temperature. On the other end, 
the study showed that the effect of axis ratio on the average Nusselt number is not 
significant with only smaller decrease in average Nusselt number as the axis ratio 

i increases. 
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In natural heat transfer problems the surface thermal boundary conditions are of great 
importance in determining both flow and thermal fields. The thermal boundary conditions 
encountered in heat convection problems are in general the prescribed surface I 

temperature and the prescribed surface heat flux. In the case of prescribed surface 
temperature boundary condition the main interest of research is to calculate the heat 1 
transfer rate fromlto the surface. While in the case of prescribed heat flux boundary I\ 
condition the main interest is to inspect the surface temperature distribution. Most of the 
pervious studies on natural heat convection problems have focused mainly on constant 
surface temperature boundary conditions. However, the case of uniform surface beating is 
practically important. 1 
Natural convection from cylindrical tubes has gained considerable attention, for its 
importance in the number of applications. These applications include cooling of electrical ! 

and electronic components, design of solar collectors and heat exchangers and many 
others. In heat exchanger design, special interest was directed to tubes of elliptic cross- i 

1 
section since they were found to create less resistance to cooling fluid which results in 
less pumping power. Although in heat exchangers the forced convection is dominant the 1 
natural convection becomes the dominant mode of beat transfer in case of power failure. I 
Moreover, elliptical tube geometry has the privilege of being flexible to apprqgch two 
limiting cases, flat plate and circular cylinder. This privilege enables researchers~toverify 1 
and to know the range of their results by comparing them with well known~revious 1 
results for these two limiting cases. In the case of natural convection with heat 
flux surface conditions, Koh [ I ]  and Kim, et al. [2] investigated the ca+:of circular 
cylinder while Sparrow and Gregg [3] and Churchill and Ozoe [4] investigatedthe , case . I 

of vertical flat plate. 
i 

The number of theoretical and experimental studies on natural convection from elliptic 1 
tubes is very few. Lin and Chao [5] investigated the natural convection from two- 
dimensional and axisymmetric isothermal bodies with arbitrary contour. In their study the 

1 
special cases of circular and elliptic cylinders are considered. The solution had the 1 
drawback of its inapplicability in the buoyant plume region since it was based on the 1 
solution of boundary layer equations with the buoyancy term replaced by a hypothetical I 
outer stream velocity function. Raithby and Hollands [6] studied the natural convection ! 

I 
from elliptic tube with its major axis vertical and with different axis ratio. Both i 
isothermal and constant heat flux boundary conditions are considered with emphasis on 1 
isothermal surface cases. In their study, thin layer analysis applicable only to thin ! 
boundary layer flow was modified to take into consideration the thick boundary layer 
effects (resulting at low Ra) and turbulent transport (resulting at high Ra). Their results I 

for average Nusselt number in the two limiting cases (vertical flat plate and circular 
cylinder ) were found to be in a good agreement with the experimental data. Merkin [7] 
solved the governing boundary layer equations for the case of natural convection from 
elliptic tube with major axis either horizontal or vertical. He presented results for local ! 

and averaged heat transfer rates for both constant surface temperature and constant I 

surface heat flux. The obtained results have the same drawback mentioned in [5]. Huang I 

and Mayinger [S] studied experimentally the natural convection from isothermal elliptic 
tubes with different axis ratios and at different orientations. They reported results for the 
local and average Nusselt numbers together with a correlation for average Nusselt 

I ! 
number. 

The analysis of natural convection from isothermal horizontal elliptic tubes and based 
on the solution of full governing equations were carried out by Badr and Shamsher [9] I 



and Badr [lo]. Badr and Shamsher [9] considered the case of the tube major axis vertical 
while Badr [lo] considered the case of tube at different orientations. The close scrutiny of 
the literature has shown a lack of detailed information on the natural convection from . 
elliptic tubes with uniform surface heating, which was the motivation to carry out this 
study. The study is based on the solution of full governing equations without boundary 
layer assumptions. The buoyancy driven flow is assumed to be laminar and two- 
dimensional. The main controlling variables are the modified Rayleigh number, Ra, the 
Prandtl number, Pr, and the tube axis ratio ( minor to major axis ratio). 

2. Problem Formulation 

Fig. 1 shows the physical model and coordinate system, consisting of horizontal elliptic 
tube of infinite length placed with its major axis vertical in a quiescent Boussinesq fluid 
at temperature T,. The tube surface is suddenly heated with uniform flux q resulting in a 
buoyancy driven flow. The flow is initially transient but with elapse of time it approaches 
the steady state. The conservation equations of mass, momentum and energy in terms of 
the vorticity, stream function and temperature can be written in Cartesian coordinates as 

where 

t is the time, pis the density, v is the kinematic viscosity, k is the thermal conductivity, 
c, is the specific heat. C,' is the vorticity, I+/ is the stream function and T is the 
temperature. F,. = pgp(T - T,), and F,. = 0 are the x', y' component of the buoyancy 

force, where /3 is the coefficient of thermal expansion of the fluid. 
The boundary conditions are mainly the no-slip and impermeability conditions on the 
tube surface and the stagnant ambient conditions very far away from it. The boundary 
condition can be expressed as : 

aw' aw' yr'=-=O -=O,and q=const. On the tube surface (44  
axf ' aY' 

8 ~ '  X + O ,  --+O,and T+T, far away from the tube surface (4b) 
ax' av ' 

I where g is the constant surface heat flux. The following dimensionless variables are now 
introduced 

x' Y' t = -  ta W = -  W' < = - 6 - ,  , a2 and I$= k(T - T, ) 
x=-'Y=;' a*' 

a a a aq 
where a is the length of semimajor axis and a is the thermal diffusivity of the fluid. In 
order to obtain accurate numerical solution the dimensionless form of governing 
equations (1)-(3) are transformed first to the elliptic coordinates 5, 11 using the 
following transformation ! 

I 
! 

x+iy c+  iq = cosh-' 
! m ! I 

! 
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(5) 

where J = (cosh2{ - ~ o s ~ ~ ) ( l  - Ar2) is the determinant of the Jacobian of 

transformation matrix, Ra = gp(2a)3aql kva is the modified Rayleigh number and 
Pr = v l a  is the Prandtl number. The velocity components in 5 and q directions are then 
defined as 

1 aw 1 aw V,=,- and V =--- 
J arl J~~~ at 

The boundary conditions (4) can now be expressed as 

a~ aw a4 y = - = 0 ,  - = 0 ,  and -=-J at 5=5, 
35 h a t  

aw aw 0 - 0  and + + 0  as {+co 
a5 @ 

where Sodefines the ellipse surface (=tanh- '~r  ) 

The temperature of the stagnant fluid around the tube at times t < 0 is T, ( 4  = 0) which 
is the same as that of the tube surface. At the start of computations ( t  = 0 )  the tube 
surface is heated uniformly with a constant heat flux q and from that moment the time 
development of both flow and thermal fields starts. 

3. The Method of Solution 

The method used for solving the governing equations (5)-(7) to obtain the time 
development of both velocity and temperature fields is based on approximating the 
stream function, vorticity and Temperature using Fourier series expansion. The approach 
is similar-to.that used.by Collins and Dennis [I 11 and Badr and Dennis [12]. The stream 
function y , vorti$ty (; and temperature Q are now approximated as 

N + = H, + CH, cos (nq) 
,: . 

, ,=I . . (9c) 

where N is the number of terms in the Fourier series. The functions f,, g,, H, and H, are 
Fourier coefficients and all are dependent on 5 and t. Substitution of equations (9a) -(9c) 
in equations (5)-(7) results in the following set of differential equations: 



where 

sgn(n-2) means the sign of term (n-2) and sgn(n-2)=glnal=0, HI.-zI =Ho for n=2. 

The terms S, , 2, and Z, are all easily identifiable functions of E, and t. 

The boundary conditions for all the functions presented in equations (10)-(12) are 
obtained from equations (8) and can be expressed as 

Integrating the both sides of equation (10) with respect to 5 (after multiplying by e-"< ) 
from t= to to t= m and using the boundary conditions (13) one obtains the integral 
condition : 

I 
[e-~~(cosh2tg" -p("+2) + s!dn - 2k,,l 1 d5 = 0. (14) 

The above integral condition is used to get the values of the function g, on the tube 
surface to get the surface vorticity distribution. 

The number of points used in the 6 direction is 200 with a grid size taken as 0.05. This 
approximates the outer boundary at infinity at <,, = 5, + 10, which corresponds to a 
very large distance from the tube surface. Such large distance is necessary to ensure that 
the conditions at infinity are appropriately incorporated in the numerical solution. 
However, the grid size is reduced to 0.025 for higher values of Rayleigh number cases 
(Rat  10') since at high values of Ra the velocity gradient near the wall becomes steeper. 
The logarithmic nature of the 5 coordinate enables us to have equal space steps in the 
numerical treatment while the physical space steps are gradually growing from very small 
space steps near the surface to large ones far away. This matches quite well the physical 
situation where steep variations near the surface exist. The number of terms in the Fourier 
series is taken as 5 terms at the start and then more terms are added as the time elapses 
until reaching the steady state. The maximum number of terms N used in most of the 
cases considered was 40. The solution procedure is the same as that described by 
Mahfouz and Badr [13]. The only difference is the appearing of the unknown terms g(,,+~) 



The differential equations (10)- (12) and the boundary and integral conditions (equations 
(13) and (14) ) are different from those obtained by Badr and Dennis [12]. However, the 
numerical technique is almost the same and will not be repeated again.   no wing both 
velocity and temperature fields, the local and average Nusselt numbers as well as the 
mean surface temperature can be obtained. The local Nusselt number is defined as : 

Nu = 2ahlk (15) 
where h is the local heat transfer coefficient defined as 

h=q/(T, -T,) 
From the above definitions one can deduce the relation between the Nu and Fourier 
coefficients Ho and H, as: 

The average Nusselt number can be deduced from the relation : 
Nu = 2 / 4 ,  

where 4," is the average surface temperature defined as 

where P is the ellipse perimeter. 

4. Results and discussion 

The governing equations along with the boundary conditions were solved in order to get 
the details of both flow and thermal fields. The Rayleigh number Ra, is considered 
within its laminar range up to lo7 , the Prandtl number, Pr is considered up to 10 while 
the axis ratio, Ar, is considered in the range from almost zero (flat plate) to almost one 
(circular cylinder). The accuracy of the method of solution is first verified by comparing 
the present results with the most available results in the literature. Fig. 2 shows the 
present results for the average Nusselt number at different Rayleigh number and at Pr=l 
for both flat plate and circular cylinder in the case of constant heat flux surface condition. 
Shown in the same figure are the correlation for % presented in Ref. [6] ( Eq. 33 and 
Table 6) in the case of flat plate and circular cylinder. The comparison shows very good 
agreement with maximum difference less than 4% at all points. 

Fig. 3 shows the surface temperature distribution in case of AI-0.5, Pt-l andat different 
Ra together with those based on,the boundary layer solution obtained by Merkin [7]. The 
boundary layer results. may be the Limiting case as Ra -t m for laminar flow excluding 
the plume region. At Rayleigh number, Ra=lo3 the solution based on the boundary layer 
assumptions deviates significantly from the present solution with 46% difference between 
the. two solutiojis at the lower stagnation point (q = 180). However, as Ra increases the 
difference between the two solutions decreases at all points, reaching to 20% at Ra=105 
(at q = 180) and to 14% at Ra=107 (at q=0) .  The surface temperature distribution at 
Rayleigh number, Ra=107, Pr=l and at different axis ratio is shown in Fig.4. Plotted in 
the same figure are the boundary layer solutions of Merkin [7]. At such relatively high Ra 
the agreement between the two solutions is quite good at all points except in the plume 
region. In that region a thick thermal boundary layer is formed and boundary layer 



assumptions lead to inaccurate solution. In the plume region, the figure shows that the 
difference between the two solutions decreases as the ellipse becomes thinner (i.e. Ar 
decreases). The figure shows a difference of 20% at A ~ 0 . 7 5 ,  14% at Ar=0.5 and 7% at 
Ar4.25. 

Fig. 5 show the time variation of the average Nusselt number for the case of Rayleigh 
number, ~ ~ 1 0 ~  , Ar=0.5 and at three values of Pr. The figure clearly shows that the 
general variation of Nusselt number is similar to that for isothermal elliptic and circular 
cylinder ( see Badr [lo], Mahfouz and Badr [14]). That is immediately after the tube 

surface is heated the thermal boundary layer is very thin leading to higher values of Nu. 
In this early time stages the conduction mode of heat transfer prevails and a quick - 
decrease in %can be observed as a result of growing thermal boundary layer. The 

~ ~ 

decrease in Nu continues until it reaches a minimum value at a certain time. Beyond this 
time the buoyancy force develops intensively, causing the fluid to set in intensive motion 
and hence transition to the convection mode domination. The transition from conduction 
mode domination to convection mode domination takes the form of overshoot in . At - 
later times the buoyancy force effect dominates and the Nu gradually approaches the 
steady state value. Fig. 6 shows the time variation of average surface temperature 4," for 
the above case. Since the tube surface heat flux is constant the average heat transfer 
coefficient and the average surface temperature are inversely related as can be inferred 
from eq. (17). That is as the average heat transfer coefficient increases (or Nu) the 
surface average temperature gets smaller. It can be also seen that as the Pr increases the 
steady state average temperature decreases as a result of increasing average heat transfer 
coefficient as shown in Fig. 5. 

Table 1 shows the effect of Ravleigh number, Ra Prandtl number, Pr and axis ratio, Ar . - 
on the steady state average Nusselt number, Nu. It can be seen that the effect of Ra on - 
steady state Nu is quite clear, that is at any fixed value of Pr and Ar as Ra increases the - 
Nu increases. This is quite expected since increasing of Ra leads to increasing of 
convection currents intensity and so increasing the average heat transfer coefficient. Also, - - 
it can be seen that as the Pr increases at any fixed value of Ra the % increases. The 

table also shows that the effect ofaxis ratio on the Nu is not significant with only a slight 

decrease in % as Ar increases. 
The steady local Nusselt Number distribution over the elliptic tube surface for the case of 
~ a = 1 0 ~ ,  Pr=l and at different axis ratio is shown in Fig. 7. The figure shows that Nu 
reaches its maximum value at the lower stagnation point ( q = 180) and then decreases to 
attain a minimum value. This minimum value occurs at the rear stagnation point for At > 
0.5 while it occurs in between q =  45and q = I00 for Ar < 0.5. The figure also shows 
that changing Ar has a little effect on Nu between .r) = 45 and .r) = 100. On the other side, 
the figure shows that the Nu values at all points for lower values of Ar are generally 
higher than those for higher Ar which explains increasing, though slightly, of as the 
Ar decreases as shown in Table I .  The surface temperature distribution, 4, for the same 

case is shown in Fig. 8. The figure clearly shows that @, is inversely related to Nu ( 

shown in Fig. 7). Therefore, the surface temperature assumes its minimum value at the 
point of maximum heat transfer coefficient ( i,e, maximum Nu) and assumes it maximum 
temperature at the minimum Nu. Also, it can be inferred from the figure that as Ar 
decreases the steady mean surface temperature decreases. 
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the maximum absolute surface vorticity occurs almost at q = 76 for the case of circular 
cylinder (Ar=0.998). As the tube gets thinner (i.e Ar decreases) the maximum vorticity 
peak point moves downstream toward the rear stagnation point while another but smaller 
peak near the forward stagnation point starts appearing. This second peak clearly 
pronounced at A ~ 0 . 2 5  and becomes fairly significant as the ellipse approaches the flat 
plate geometry at Ar = 0.05. 

Fig: 10 shows the steady state temperature decay along the extension of ellipse major axis 
(q = 0) and minor axis ((q = 90) for the case of Ra = lo4, A ~ 0 . 5  and at different values 
of .  Pr. At the same value of Pr the figure shows that the temperature gradient at the tube 
surface Y*=O at the two surface locations (q = 0, q = 90) is the same, confirming the fact 
that the heatflux is constant. Also, the figure shows that as Pr increases the temperature 
at .the tube surface decreases as a result of increasing heat transfer coefficient. Moreover, 
the figure shows a slow temperature decay within the plume region along the major axis 
(q = 0) while that decay along the minor axis (q = 90) is much faster, delineating a 
thinner therm'al boundary layer along (q = 90). However, as Pr increases the thermal 
boundary layer becomes thinner resulting in much faster temperature decay along 

~ 

(q = 90). 
Fii. 11 Shows 'the effect of Pr on both flow and thermal fields for the case of ~ a = 1 0 ~ ,  
A ~ 0 . 5 .  Since these fields are symmetrical'about the vertical axis, only one half of each 
field is considered. The flow field is represented by the streamlines while the thermal 
field is represented by the isotherms. These fields are plotted at time (t=l) at which the 
thermal field in the vicinity of the tube surface almost reaches its steady state. The figure 
shows that the effect of Pr on both flow and thermal fields is quite clear, that is at higher 
values of Pr the thermal boundary layer gets thinner while the flow field develops faster 
toward the state ( see figures 5, 6) at which the average temperature ( or %) attains its 
steady value. Fig. 12 Show the effect of Ar on both flow and thermal fields for the case 
of ~a=10', Pr=O.l. The figure shows that the axis ratio has a little effect on the 
streamlines and isotherms. The only effect, though not clear in the figure, is that as the 
ellipse gets thinner the flow resistance decreases allowing higher approaching flow 

velocities which results in an increase in %as indicated in Table 1. 

The problem of natural convection from an elliptic tube with its major axis vertical and 
heated uniformly is investigated. The full governing equations of flow and energy are 
solved to give the details of both velocity and temperature fields. The effect of modified 
Rayleigh number, Prandtl number and axis ratio are considered in this study. The value 
of Rayleigh number is considered up to lo7, Prandtl number is considerd up to 10 while 
the axis ratio is varied from 0.05 ( almost flat plate) to,0.998 (almost circular cylinder). 
Results are presented for the local and average Nusselt numbers. Also the study included 
the effect of controlling parameters on both local and mean surface temperature. The 
study showed that as Rayleigh number increases (for a certain fluid and ellipse 
geometry) the average Nusselt number increases. Also, the study showed that as Prandtl 
number increases the average Nuselt number increases, resulting in a decrease in mean 
surface temperature while the effect of axis ratio is not significant with only smaller 
decrease in mean surface temperature as the axis ratio decreases. 



Nomenclature 

a 
Ar 
b 
c 
f" 
g 
gn 
h, I; 
Ho ,Hn 
k 
Nu, 
Pr 
4 
Ra 

length of semi-major axis 
axis ratio (=b/a) 
length of semi-minor axis 
the ellipse eccentricity 
Fourier coefficients 
gravitational acceleration 
Fourier coefficients 
local and average heat transfer coefficients 
Fourier coefficients 
thermal conductivity 

local and average Nusselt numbers 
Prandtl number ( v l a )  
constant heat flux 
modified Rayleigh number (g~(2a)3aqlkva)  

t dimensionless time 
T temperature 
Y * the dimensionless distance from the tube surface 

x'-a ye- b 
(= 7 Ra 02') along q = 0 and (= - Ra "") along line q = 90 

2a 
Greek symbols 

thermal diffusivity 
coefficient of thermal expansion 

dimensionless temperature k(T -T,)laq 
dimensionless ratio, a /c' 
elliptical coordinates 
dynamic viscosity. 
kinematics viscosity 
density 
time 
stream function and dimensionless stream functions 
vorticity and dimensionless vorticity 

at tube surface 
at infinite distance from the surface 
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Fig. 1 Physical model and coordinate Fig. 2 variation of average Nusselt 

system number with Rayleigh number and 
comparison with the correlation from [6] 
for the cases of ( -----) circular cylinder 
and (- ) flat plate. 
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Fig. 3 The temperature distribution along 
the ellipse surface and comparison with 
the boundary layer solution ( B.L.S ) 
obtained from [7] for the case of Ar=0.5 
Pr=l and at different Rayleigh numbers 

- Present 

0.2 B.L.5 PI A ~ 0 . 5  m, 

11 

Fig. 4 The temperature distribution along 
the ellipse surface and comparison with 
the boundary layer solution ( B.L.S ) 
obtained from 171 for the case of Ra=107, 
PFI and at different axis ratios, Ar. 

Fig. 5 The time variation of average 
Nusselt number for the case of Ra=10?, 
Ar=0.5 and at different values of Prandtl 
Number, Pr. 

Fig. 6 The time variation of average 
surface temperature for the case of 
Ra=1 04, ~ k 0 . 5  and at different values 
of Prandtl Number, Pr. 
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Fig. 7 The local Nusselt number 
distribution along the ellipse surface for 
the case of ~ a = l o ~ ,  Pr=l and at different 
axis ratios, Ar. 

Fig. 8 The temperature distribution alon k' the ellipse surface for the case of Ra=lO , 
PI=] and at different axis ratios, Ar. 

Fig. 9 The surface vorticity distribution 
for the case of ~ a = 1 0 ~ .  P F ~  and at 
different axis ratios, Ar. 

Fig. 10 The temperature distribution along 
the major axis (q = 0 )  and along the 
minor axis (q = 90) for the case of 
~ a = 1 0 ~ ,  A ~ 0 . 5  and at different Pr 
numbers 



Fig. 11 The streamlines (right) and the 
isotherms ( left) at time t=l for the case 
of Ra= lo4 ,  A ~ 0 . 5 ;  a) Pr=O.l, b) Pr-l 
and c)Pr=lO . , 

Fig. 12 The streamlines (right) and the 
isotherms ( left) at time t=0.4 for the case 
of Ra = 10' , Pr=O.l, and a) Ar-0.25, b) 
Ai-0.5 and c) Ar = 0.75 .. 
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