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ABSTRACT

Similarity transformation are useful in the detection of deformation and for the
connexion of geodetic networks. The estimated netpoints coordinates and their
covariance matrix can be transformated from one computational base to another
without repeating the adjustment process via an similarity transformation. The
derivation of the transformation matrices is closely connected with the properties of
generalised matrix inverses which have been mentioned in connection with inner
constriants.

The main objective of this paper is to introduce the partial trace minimization
approach as an proposed general solution technique for free geodetic net work. In
addition the problem of transforming regular covariance matrix into a singular one
with the required rank deficiency and vice verse will be solved. The structure of the
transformation matrices for different datum defects have been deduced. Finally the
use of similarity transformation to transform a covariance matrix from one
computational base to another is introduced and disussed. Two numerical examples
representing simulated and real geodetic networks were given in order to illustrate the
application and the efficiency of the underlying theoretical concept.
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1. INLKUDUCU L1UIN:

S - transformation are useful in the detection of deformation and for the connexion of
geodetic networks. The coordinates of netpoints are estimated at different epochs. In
order to compare the coordinates of positions of different epochs, their coordinate
systems have to .coincide and they have to be referred to the same datum. Different
datum definitions between the epochs would lead to wrong conclusions, because the
estimated coordinates being' compared and their covariance- matrix are datum
dependant. The analysis and adjustment of each individual epoch is done in the form
of a free network adjustment referring the datum to all coordinates of the epoch. The
covariance matrix shows minimum trace with respect to all points coordinates [1.4].
Because of different intial coordinates, the datum of epochs to be compared might be
different. This is also true if partial networks that were chosen to define the datum in
the network adjustment are not identical between the epochs. In order to construct a -
common datum ‘using - partial trace minimization approach, either the individual
epochs might b€ ‘readjusted selecting a common set of points to define the datum , or
an S - transformation of the result of the adjustment of each epoch could be
performed: The main objective of this paper is to introduce the partial trace
minimization approach as an proposed general solution technique for free geodetic
networks. In addition the problem of transforming regular covariance matrix into a
singular one with the required rank deficiency and vice verse will be solved. Finally
the use of S - transformation to transform a covariance matrix from one

computational base to another is introduced and discussed.

2.MATHEMATICAL MODEL FOR ADJUSTMENT TECHNIQUES

The mathematical model for the least squares adjustment by the method of
observation equations is composed of the functional model , which is given in linear

form by
v=Ax- L )
And the stochastic model
-1 2 -1
P = Ql =0, Cl (2)
Where v is the nx1 vector of residuals, A is the nxu coefficient matrix, ( which is also
commonly known as the configuration matrix or design matrix ) , x is the ux1 vector
of unknown corrections to the approximate coordinates; L is the nx1 vector of the

absolute terms; P is the nxn weight matrix of the observations; Q) is the nxn weight
coefficient matrix of the observations, C; is the nxn covariance matrix of the

. 2 - . . .
observations, and O , is the a prior variance factor. The least squares solution of an
overdetermind set of observation equations is obtained by setting [ 2,9 ]

T
v Pv= minimum 3)

The application of this criterion leads to the following system of normal equations
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(ATPA).x = ATPL B “)

In most engineering networks a datum defect , which equal to rank deficiency of the
design matrix A, will exist and the least squares estimate of parameters cannot be
obtained since the normal equations coefficient matrix N will be singular. The
reason for the rank deficiency is that the coordinate datum is not completely defined
by the observations. In order to avoid this singularity in the normal equation
coeflicient matrix, two different approaches will be used.

2.1 Classical Constrained Approach

Classical constrained adjustment can be achieved by including external constraints on
the system of equations, which in effect complete the definition of the coordinate
datum. The minimum number of these constraints must equal to the datum defect d.
The solution determined by such a process is called a minimal constrained solution. It
is important to realize that the introduction of arbitrary constraint equations will lead
to arbitrary estimates from the solution. This is of particular importance in the
analysis of geodetic networks, and in the application of networks to deformation
monitoring. The conventional solution of defining the geodetic datum for the network
is to delete the d colums of the design matrix A which refer to the points coordinates
being kept fixed, before forming the system of normal equations. The best estimate
for the least squares solution vector x can be computed as follows [ 1,2 ] :

R T a T 4T
x =(APA) APL=N"ATPL 5)

And the (u - d x u -d ) variance - covariance matrix of the estimated coordinates can
be computed using the following relation:

a2 a2 T -1
C, =G, Q=0 (APA) (6)

X
Where Qq is the (u-d x u-d) weight coefficient matrix of the estimated coordinates

2
[l . . - .
and O o 18 the a posteriori variance factor.

2.2 The lnner Constraint Approach

The inner constraint approach is based on imposing some internal constraints on the
average positional, rotational and scale changes throughout the network when the
adjustment process is performed. This means that the centroid of the approximate
coordinates and their average orientation and scale are maintained after the adjustment
process. The inner constraint approach has been widely used and is often reputed to
remove the problem datum definition. The general form of the expanded matrix of the
normal equations, augmented by the inner constraints, can be expressed by [ 2,6 ] .

N G X A'PL
G 0!l .| kK | = 0 W)
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Where the (u x d ) inner constraints matrix U rows Span i€ il Space ULt ucangi
matrix A or the null space of the normal equations coefficient matrix , satisfying the
following relations : -

Gx =0 , AG =0 and ° NG =0 8)

The regular inverse of the expanded matrix in equation (7), which is given by

-1 N r -
N G Q, G(G G)

T T 1T
0 = (GG)' G 0 )

Leads to the weight coefficient matrix of the estimated coordinates as pseudo inverse
of the normal equations coefficient matrix [ 3 ]

+ T -1 L S S
Q: =(N+GG) -G(GGGG) G (10)
Which has the properties of minimum trace
+ +
Trace (Q 4 ) = minimum and Q X G =0 (11)

The least squares solution of the parameters x subject to the inner constraints has the
important characteristic of having minimum norm for the unknown coordinates

parameters [ 3 ]

N T _ T
A=(N+GG )y A pL (12)
With
.

l‘ﬂ - . » 3 »
X = minimum  or x P X = minimum (13)

X

3. PARTIAL TRACE MINIMIZATION APPROACH

In some practical cases, such as the deformation monitoring networks, it is desirable
that only some of the points in the geodetic network are contribute to the definition of
the datum. In this case both the trace of the covariance matrix and the norm of the
solution vector of that subset of the netpoints should be minimized. This can be
achieved by using of the following (u, d) matrix B

B =EG (14)

Where E is a (u x u ) quadratic unit matrix except for zeros on the diagonal
corresponding to coordinates not required to contribute to the datum. Then, the
general form of the expanded matrix of the normal equations can be expressed as

follows [ 5,7 }:
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B 0 k = 0 - (15)

Where B is the ( uxu ) modified inner constraints matrix. The general expression for
the regular inverse is obtained as follows:

~1 - T
N B Q, G( B G)

r -1 7
B 0 | =|(GB) G 0 (16)

Where Q, is the ( u x u ) weight coefficient matrix of the estimated coordinates as
reflexive generalised inverse of the normal equations coefficient matrix

3 - (N +BB ) -¢ (¢BBG)'G (17)

Which has the minimum partial trace. The least squares solution of the parameters
subject to the modiefied inner constraints can be computed as

x=(N+BB !

T
A PL (18)
Which has also the minimum partial norm. Also, the conditions in equation ( 8 ) can
also be rewritten as follows :

T -
B i =0, NG=0 and O,B =0 (19)

By denoting the datum - points, which contribute to the datum definition by the suffix
D, and they can be arranged in the upper place of the unknown parameter vector. The
remaining netpoints denoted by the suffix ( N ) can also be arranged in the lower
place of the following vectors and matrices as follows:

iD G, G o Ivp OpN

» G = B = JH=" (20)

iN GN 0 OND ONN

ol
[}

The regular inverse of the expanded normal matrix in equation ( 16 ) can be rewritten
as follows:

DD DN E D le |: QI)N EGD (G D G,) q
— ' — T -
“'Nn __?Jlgzs_'__; ?ﬂ = Quw i Quw G, (G » Gy) 21)
U ’r(] NSRS G B B i L
b 0 : G » 1“ ) G 0 E ( G (Jl) ) G NE 0
In which
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pD GD- : 0 ? QI)D GD = 0 and -G D i]) =0 (22)
And _
Q, = Nw (23-2)
= — 1
Qu == Qp Ny Ny (23-b)
Qo =-N NN UND _IQDD ; (23-¢)
QNN» N N nwoT N NN N ND QDD N DN N NN (23-d)
Ifonly d parameters are used to define the coordinate datum , then
) 0, 0[?{v
Qx= ON!) N NI (24)
In which
0 O = — 1
Ql)]) = ( L3 Ql)N = () v QNI) = ( and QNN E N NN (25)

4. S-TRANSFORMATION AND ITS APPLICATION :

Datum changes may be obtained by S-transformations in order to select the proper
coordinate datum. S-transformations were first described in published form by baarda
(1973). The estimated point coordinates and their covariance matrix can be
transformed from one computational base to another without repeating the adjustment
process via an S-transformation. The transformation from an arbitrary datum (i) to a
certain datum ( j ) can be achieved for the datum dependent coordinates and their
covariance matrix with the following formulas [ 2,3 ]

x; =S; x; and  (Cy; = § (Cy) Si" (26)
In which ,
$;=8x =1-G (G'"G) G’ (27)

Where S, is the S- transformation matrix which derived from the pseudo inverse
using the inner constraints. This Transformation matrix S, are useful when
transforming a regular covariance matrix of coordinates into a singular one with the
required rank deficiency or vice verse { 3,8 . In some cases it is required that only
some of the netpoints should be contributed to the definition of the datum and that the
trace of the covariance matrix of that subset of net points be minimised. This can be
achieved by the use of the matrix E inserted into equation (27) as follows:

] |
s =1-G(G E Gy! G E (28)



According to equation (21), the transformation matrix S, can be in general case-
partitioned in submatrices of datum netpoints ( with suffix D ) and the remaining
netpoints ( with suffix N ). Then ’

p! DN
] e 29
T 1 T
-G, (G G,) G? .
With symmetric Transformation matrix
- T ‘16 =

Spp = Lop = Gy (G, G, )" G=L,-Ry, (30-a)

And - _
Qo = Sop Qoo Son and Xy = Spp % (33-b)

Both equations ( 28 ) and ( 29 ) can be considered as the general form of the
transformation matrix . For a two dimensional geodetic monitoring network with m
points, the transformation matrix S, in equation (29 ) can be expressed in more detail
as follows:

/; -Riy ) PP Rim

-Ra1 l-Rzg’ .................. Rt
Sp =z ..le 1 "le,Z ............ I'le.ml (31.3)
Rints1,0 = Rnpppgeeeeeeeeees ~ Runt+1, m1
\ Runt Y SO - Ruput
In which
T [ T ‘
G](Gka )— Gk ,fOI’ k=1...my
R = (31b)

0 , for my<k <=m
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I- Ry , for k=i
Si,k = (31.c)
- R;,k N for k=i

Where m; is the number of datum - points in the network.

If only d parameter are used to define the datum, then. The matrix Gp is quadratic
matrix with the dimenision d, and the inverse ( G'p» Gp y'  is regular. The
transformation matrix in equation ( 29) can be written in this case as follows :

0 E 0
(dd) | (dm- d)
Sd = [Tt TTTom o E --------------- =
-1t
-G, G N I
(m-d,d)i (m-dm-d)
In which
= - = -1
Sm) = 0 , SNN = 1 and SND— -GN Go (32.b)
And
= = = n-1
o =0 0 Qy =0 amd Q0 = N7 (32.c)

The following relations represent the structure of the transformations matrices for
different datum defects which their elements can preferable be computed using the
approximate netpoints coordinates relative to the centroid of all the netpoints . For
each number of datum defects , the appropriate matrices can be setup as subsets of the
inner constraints matrix G, so that datum transformations may be performed for all
types of horizontal geodetic monitoring networks [ 5 ].

I — case of datum defect d =2
f 1 0 ... I 0 1/m 0
T
G —.k 0 1 ....... 0 1 N RLk = 0 1/m (33)
11 - case of rank defect d = 3
1 0 1 0 P Vi
T
G = 0 | STUUR | 1 JRi = (34)
X, Y e XY A, Wi

104



Where v o
P = (Umy )+ (X3 %) /(R+F ) 5 wu= (Um)+(Hifi)/(R+§F) |

Vi = (R i) /(R +§) , G = (Fi%) (R +F)
In which

y, = yl-( 1/m1)2yk k=1....my

X =x-( 1/my )Zxk k=1...my

1 0 ... 1 0

0 1 ... 0 1 Pik -k
G= ~Xt Yi ocoieenn ~Xm Yu ’ Rl.k = (3* )
Y1 X1 secaess Yo  Xm ik Pik

P = (1 )+ (R G+ FiT o) (B +F)
Gk = (ily_k“ylik) /(i +y2 )
In which

y, =y~ (Vm)Zy, k=1... m
X, = x-(l/m)Xx k=1...my
5. NUMERICAL EXAMPLES

5.1 Simulated Geodetic Network

The schematic two - dimensional trilateration network is used to demonstrate the
above derived results. This local network is composed of four new points P1, ..., P4
with unknown coordinates as shown in fig. (1). The approximate coordinates of the
new net points are listed in table (2) with respect to the selected local horizontal

coordinate system.

P
Table 1 : The approximate coordinates of the
netpoints
points X (m) Y(m)
P, 0 0 X
| 100 0 T
-
Py 100 100 S 4
P, 0 100 Fig . I : A schematic geodetic network
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The simulated network was adjusted as a free trilateration network using the inner
constraints approach. In this study, the inner constraints matrix G was given in the

following three cases as follows :

/1 0 -Xl\ )
0 1 ¥i Gp3
1 0 -Xa > Gn2
T
1 0 -X3
0 1 Y3
I N X3 | o Gns

5.2 Real Geodetic Network

A two - dimensional hybrid network comprising six points is established in ElI —
Mansoura city ( Sandoub zone ). The configuration of the network points is shown in
Fig. 2. All directions and distances of the network legs were observed using SOKKIA
( SET 5 ) Total station. The standard errors of the observed directions was three
second whereas the standard deviation of the measured distances is % (5Smm + Sppm).
The approximate coordinates of the netpoints are listed in table (2) with respect to the
selected local horizontal coordinate system.

Table2. The approximate coordinates

of the net points

Points X7 Y
P, | 2708294 | 2000235
P, 2002.848 | 1999.845 X
P3 1920.192 | 3017.159
P4 2356.732 | 4174.899
Ps 3051.645 | 4003.819
Ps 2750.647 | 2971.591 Fig. 2 : A real geodetic network subjected to

S - transformation.
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6. RESULTS AND DISCUSSIONS

* {The covariance matrix of the estimated coordinates Cy ,

which has the minimum

trace , was computed according the equation (10) as follows:

f 0281 0.031 -0.094 0.094

0.281 -0.094 -0.156

0.281 -0.031

Cm = 0.281
Symm.
1-Case (A):

-0.031
-0.031
-0.156
-0.094

0.281

-0.031
-0.031
0.094
-0.094

0.031
0.281

-0.156
0.094
-0.031
0.031

-0.094
-0.094
0.281

If the coordinates of all four netpoints were contribute to the datum definition. This

means that (m= m; = 4, u = u =8 and B,

= G)

The transformation matrix S,, was computed using the equation (27) as follows :

/706250 0425 -0.025 0425 -0.125

0.625 -0.125 -0.375 -0.125

0.625 -0.125 -0.375

S_= 0.625 -0.125
Symm. 0.625

In which Sy = Sm with the following properties

SiG=0 , S =8" and S, .S =S

And

ES”‘;‘O for i=1 ... u, k=1 ..

-0.125
-0.125
0.125
-0.125

0.125
0.625

-0.375
0.125
-0.125
0.125

-0.125
-0.125
0.625

(i.e §; isidempotent )

~ The corresponding covariance matrix of the estimated coordinates C,, which was

. computed from the following relation

Cl = Sl Cm

S

1

gave identical numerical values to those obtained by using inner constraints approach

Cn (ie C; = Cy)and

Trace (C1) = Trace (Cn) = 2.250



1I-Case (B):

if three netpoints were contribute to the datum definition. This means that the three

netpoints ( Py, P, and P3) were datum points ( m=3,u = 6,u=8)

and B= [Gm)
0

The computed transformation matrix S, were

/70333 0167 -0.167 0167 -0.167 -0.333
0.583 -0.083 -0.417 -0.083 -0.167
0.583 -0.083 -0.417 0.167

S, = 0.583 -0.083 -0.167

Symm 0.583 0.167
___________________________________________________ 0.333 |
0.667 0167 -0.167 0.167 -0.167 -0.333 |

-0.333 -0.167 '0.167 -0.167 0.167 -0.667

In which ‘
Sop = S0 ., Spn=0 and Syy =1

With the following property

And the corresponding covariance matrix C, in which the top left - hand

sub — matrix has minimum trace was computed as follows :

Cz = Sz Cm STz

0.153 0.056 -0.097 0.097 -0.056 -0.153 |

0.236 -0.069 -0.181 0.014 -0.056 !

0.278 -0.028 -0.181 0.097 |

C=Cp= 0278 -0.089 -0.097 |
|

Symm 0.236  0.056
0.153

In which

Con = C'Nxp and  Trace (Cy)= 1334 + 1.556
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II-Case(C):

If only three netpoints coordinates were contribute to the datum definition. This
means that , the netpoints coordinates ( y1 , X1 and y ) were datum coordinates
(U1:d=3 ,'m1'=3/2)

. Gp3
And_ B3 =
0

The transformation matrix

/ 0.000  0.000  0.000
o5 Symm. 0,000  0.000

0.000  0.000 -1.000
-1.000  -1.000  1.000
-1.000 0,000  0.000
-1.000 -1.000 1.000 |

And the corresponding covariance matrix Ci was computed as follows :

G =8 Cun S5

ﬂ.OOO 0.000 0.000 ! 0.000 0.000 0.000 0.000 O‘Oﬂh
0.000  0.000

0.000 0.000 0.000 0.000 0.000

Symm.
0.875 0:50'()
\ 2..00’_()/

In which

Trace (C3 )= 6.500
Based on the previous results , the following relations can be deduced :

Cn = Sm Cp S = Sm Cg Sm = Sm Cm Sm (36)

C, =8 C S =8 CuS, = S C S, 37
Ci=Ss CuSa = 8SaCp ST = Sa G STy (38)
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Table 3: Effect of the number and geometry of datum - points on the positional

accuracy of the real network.

Tolal inner constraints Partial inner constraints Minimal constrainis
« | Variant Variant Variant Variant | Variant Variant Variant
=0 @ 3) @ | () )

Q] Six datum Five datum Four datum Three Two datum | Three datum Three datum
o points points points datum points coordinates coordinates
Z. (P, P2,PsP, Ps) (P Po.PiPs) points (PP2) (y1,%1.72) | (Xs;¥s,%s)
(P PyPs)
Cp P; 0.41 039 0.38 0.33 0.24 0.00 1.19

(cm) | Py 047 045 043 0.37 0.24 0.47 1.36
P; 0.42 0.44 0.42 0.29 0.97 1.00 0.82
P, 0.46 0.44 0.39 1.01 1.81 1.83 0.72
Ps 0.40 0.38 0.58 0.96 1.70 1.72 0.39
Pe 0.49 0.59 0.59 0.58 0.90 0.94 000
P, 0.29 0.29 0.29 0.26 0.24 0.00 1.13
P, 0.36 0.35 0.34 0.28 0.24 047 1.30

A P 0.34 0.38 0.36 0.25 0.90 0.93 0.72

(cm) | Py 0.35 0.35 0.33 0.91 1.74 1.77 0.59
P 0.29 0.28 0.57 0.89 1.66 _1.68 0.38
Ps 043 0.52 051 047 0.84 0.87 0.00
P, 0.28 0.26 0.25 0.20 0.00 0.00 0.38
P, 0.30 0.28 0.26 025 0.00 0.00 042

B P; 0.23 0.22 0.22 0.14 0.37 0.37 0.38

(cm) | Py 0.29 0.27 0.20 0.44 0.47 0.47 0.41
Ps 0.27 0.26 0.34 0.34 0.37 0.38 0.00
Ps 0.23 0.28 0.29 0.33 0.32 0.34 0.00

Trace (C,) 1.164 1.222 1.345 2.606 8.022 8.433 4.610

hx' x 1.455 1.488 1.691 4.100 35.566 34.156 2.303

Table 3. shows the effect of number and geometry of the datum-points on the points —
position accuracy for real geodetic network, while table (4) shows the transformed
corrections to the approximate coordinates for the seven network variants. From these
results, it can be found that:
1-  As the number of the datum-points within the network decrease, the numerical
values of the positional error op; as well as the parameters of error ellipse
( A; ,B; ) increase.
2-  As the number of the datum-pomts within the network decrease, the numerical
values of the trace of the covariance matrix of the estimated coordinates and the
norm of the solution vector increase. -
3~  The datum-points receive the smallest numerical values of the correction than

the remaining points within the network.
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Table 4: The transformed corrections to the approximate coordinates.(cm).

Total inner’ Partial inner constraints . - - | Minimal constraints | .
constraints y L R .

- Variant Variant Variant Variant, | Vanant Variant Variant

R 0] 2) 3) @ ) L (6) )

8, | Sixdatum Five datum Four datum Thiree Two Three datum | Three datum

) points points points datum datum coordinates | coordinates

z. (P P,PPPs)y | (P Pel3Pe) points points Yi¥1,¥2) | (Xs,¥6,%)

@i PPy | (P Py) -

dx | Py -0.20 -0.12 -0.10 -0.16 0.07 0.00 -0.65
dy 1083 | 08 1 082 | 059 y. 000 000 | _ 08I
de | Py} <033 -0.25 -0.23 -0.29 . .1:-0.07 -0.13 -0.78
d, -0.25 -0.25 -0.20 -0.17 0.00 0.00 -0.20
dy | P3| -0.05 0.03 0.13 044 | 1.77 1.71 -0.42
dy -0.53 -0.53 -0.47 -0.42 -0.15 -0.15 -0.48
de | P4 | -0.08 -0.01 0.02 093 | 3.51 3.45 -0.35
dy -0.18 -0.18 -0.16 -0.26 | -047 -0.47 -0.17
dy | Ps 0.28 0.35 0.54 1.21 3.61 3.55 0.00
dy 0.13 0.13 0.10 -0.26 -1.23 -1.23 0.08
dx | Ps 0.37 0.45 0.55 0.84 2.12 2.06 0.00
dy | ©0.02 0.02 0.01 -0.24 -0.87 -0.87 0.00

7. CONCLUSIONS AND RECOMMENDATIONS:

From the previous discussions, the following conclusions can be drawn:

1- The S — transformation is a powerful computational tool which is capable of
transforming one adjustment to another without going through the procedure of

every adjustment.
2- S — transformation can be used to select the proper coordinate datum for both

control and monitoring geodetic networks as well as to analyse the stability of the

reference points.
3- Partial trace minimization can be considered as the general adjustment approach for
free geodetic networks based on the inner constraints.
4- The transformation matrix S is dependent upon the following points: _
a- The number and the geometry of the datum — points which contributes to
the datum definition.
b- The inner constraints matrix G or B.
c- The number of the datum defect d.
5- Positional accuracy of points in monitoring networks depends heavily on the spatial
distribution of its datum-definitions points.
6- The size, shape and orientation of the error ellipses associated with the adjusted
netpoints are dependent upon the selection and distribution of the datum-points .
7- To counteract the weakness in orientation , the selected datum subset can be
characterized by a balanced and good geometry relative to the size and shape of

the whole network.




8- The coordinate discrepancies indicate the possible movements of netpoints
between the observation epochs, but only if the datum is the same at each epoch.
9- Finally, S- transformation can also be used to solve the problem of connecting a
secondary control network to a primary network, or when a GPS network is to be
connected to an existing terrestrial network.
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