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ABSTRACT 

Similarity transformation are useful in the detection of deformation and for the 
connexion of geodetic networks. The estimated netpoints coordinates and their 
covariance matrix can be transformated from one computational base to another 
without repeating the adjustment process via an similarity transformation. The 
derivation of the transformation matrices is closely connected with the properties of 
generalised matrix inverses which have been mentioned in connection with inner 
constriants. 
The main objective of this paper is to introduce the partial trace minimization 
approach as an proposed general solution technique for free geodetic net work. In 
addition the problem of transforming regular covariance matrix into a singular one 
with the required rank deficiency and vice verse will be solved. The structure of the 
transformation tnatrices for different datum defects have been deduced. Finally the 
use of similarity transformation to transform a covariance matrix from one 
computational base to another is introduced and disussed.Two numerical examples 
representing simulated and real geodetic networks were given in order to illustrate the 
application and the efficiency of the underlying theoretical concept. 
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S - transformation are useful in the detection of deformation and for the connexion of 
geodetic networks. The coordinates of netpoints are estimated at different epochs. In 
order to compare the coordinates of positions of different epochs, their coordinate 
systems have to coincide and they have to be referred to the same datum. Different 
datum definitions between the epochs would lead to wrong conclusions, because the 
estimated coordinates being compared and their covariance matrix are datunl 
dependant. The analysis and adjustment of each individual epoch is done in the form 
of a free network adjustment referring the datunl to all coordinates of the epoch. The 
covariance matrix shows minimum trace with respect to all points coordinates 11-41. 
Because of different intial coordinates, the datum of epochs to be compared might be 
different. This is also true if partial networks that were chosen to define the datum in 
the network adjustment are not identical between the epochs, In order to construct a 
common datum using partial trace minimization approach, either the individual 
epochs might bk readjusted selecting a common set of points to define the datum, or 
an S - transformation of the result of the adjustment of each epoch could be 
performed. The main objective of this paper is to introduce the partial trace 
minimization approach as an proposed general solution technique for free geodetic 
networks. In addition the problem of transforming regular covariance matrix into a 
singular one with the required rank deficiency and vice verse will be solved Finally 
the use of S - transformation to transform a covariance matrix from one 
computational base to another is introduced and discussed. 

2.MATHEMATICAL MODEL FOR ADJUSTMENT TECHNlQUES 

The mathematical model for the least squares adjustment by the method of 
observation equations is composed of the hnctional model , which is given in linear 
form by 

And the stochastic model 

Where v is the nxl vector of residuals, A is the nxu coefficient matrix, ( which is also 
commonly known as the configuration matrix or design matrix ) , x is the uxl vector 
of unknown corrections to the approximate coordinates; L is the nxl vector of the 
absolute terms; P is the nxn weight matrix of the observations; Qj is the nun weight 
coefficient matrix of the observations, Cj is the nxn covariance matrix of the - 

L 

observations, and 0 , is the a prior variance factor. The least squares solution of an 
overdetermind set of observation equations is obtained by setting [ 2,9 ] 

'r 
v P v = minimum 

The applicatioti of this criterion leads to the following system of normal equations 



i In most engineering networks a datum defect , which equal to rank deficiency of the 
design matrix A, will exist and the least squares estimate of parameters cannot be 
obtained since the normal equations coefficient matrix N will be singular. The 
reason for the rank deficiency is that the coordinate datum is not completely defined 
by the observations. In order to avoid this singularity in the normal equation 
coeficient matrix, two different approaches will be used. 

2.1 Classical Constrained A ~ ~ r o a c h  

Classical constrained adjustment can be achieved by including external constraints on 
the system of equations, which in effect complete the definition of the coordinate 
datum. The minimum number of these constraints must equal to the datum defect d. 
The solution determined by such a process is called a minimal constrained solution. It 
is important to realize that the introduction of arbitrary constraint equations will lead 
to arbitrary estimates from the solution. This is of particular importance in the 
analysis of geodetic networks, and in the application of networks to deformatiori 
monitoring. The conventional solution of defining the geodetic datum for the network 
is to delete the d colums of the design matrix A which refer to the points coordinates 
being kept fixed, before forming the system of normal equations. The best estimate 
for the least squares solution vector x can be computed as follows [ 1,2 ] : 

'I' 
; = ( A"'PA )' A PL = N-I PL (5)  

And the ( u - d x u - d ) variance - covariance nlalrix of the estimated coordinates can 
be computed using the following relation: 

Where QG is the (u-d x u-d) weight coefficient matrix of the estimated coordinates . - 
,2 

and o is the a posteriori variance factor. 

2.2 The Inner Constraint A ~ ~ r o a c h  

The inner constraint approach is based on imposing some internal constraints on the 
average positional, rotational and scale changes throughout the network when the 
adjustment process is performed. This means that the centroid of the approximate 
coordinates and their average orientation and scale are maintained aAer the adjustment 
process. The inner constraint approach has been widely used and is often reputed to 
remove the problem datum definition. The general form of the expanded matrix of the 
normal equations, augmented by the inner constraints, can.be expressed by [ 2,6 ] . 



Where the ( u x d ) inner constraints matrlx cl rows span me null spatx ul LUG u r ; a l p  

matrix A or the null space of the normal equations coefficient matrix , satisfying the 
following relations : 

d ;  = O  , A G = O  and N G = O  (8) 

The regular inverse of the expanded matrix in equation (7), which is given by 

0 

Leads to the weight coefficient matrix of the estimated coordinates as pseudo inverse 
of the normal equations coefficient matrix [ 3 ] 

Which has the properties of minimum trace 

+ + 
Trace (Q ,) = mininium and 

Q ,  
G = O  (11) 

The least squares solution of the parameters x subject to the inner constraints has the 
important characteristic of having n~inimum norm for the unknown coordinates 
parameters [ 3 ] 

.r -1 'r ; = ( N + G G  ) A PL (12) 
With 

'I' A 'r 
x i = minimum or x P i = lninimun~ (13) 

3. PAH'I'IAL TRACE MINIMIZATION APPROACH 

In some practical cases, such as the deformation monitoring networks, it is desirable 
that only some of the points in the geodetic network are contribute to the definition of 
the datum In this case both the trace of the covariance matrix and the norm of the 
solution vector of that subset of the netpoints should be minimized. This can be 
achieved by using of the following (u , d) tnatrix D 

Where E is a ( u x u ) quadratic unit matrix except for zeros on the diagonal 
corresponding to coordinates not required to contribute to the datum. Then, the 
general form of the expanded matrix of the normal equations can be expressed as 
fbllvws [ 5,7 J : 



Where B is the ( uxu ) modified inner constraints matrix. The general expression for 
the regular inverse is obtained as follows: 

Where Qx is the ( u x u ) weight coefficient matrix of the estimated coordinates as 
reflexive generalised inverse of the normal equations coefficient matrix 

Which has the minittiurn partial trace. The least squares solution of the parameters 
subject to the modiefied inner constraints can be computed as 

Which has also the minimum partial norm. Also, the conditions in equation ( 8 ) can 
also be rewritten as follows : 

By denoting the datum - points, which contribute to the datum definition by the suffix 
D , and they can be arranged in the upper place of the unknown parameter vector. The 
remaining netpoints denoted by the sufix ( N ) can also be arranged in the lower 
place of the following vectors and matrices as follows: 

The regular inverse crT the expanded norllial nia~rix in equation ( 16 ) can be rewritten 
as follows: 

In  which 



- 4 1 

N,, G, = 0 , Q,, GI, = 0 and G , ED = 0 

If only d parameters are used to define the coordinate datum , then 

In which 

4. S-TRANSFORMATION AND ITS APPLlCATlON : 

Datum changes may be obtained by S-transformations in order to select the proper 
coordinate datum. S-transformations were first described in published form by baarda 
(1973). The estimated point coordinates and their covariance matrix can be 
transformed from one computational base to another without repeating the adjustment 
process via an S-transformation. The transformation from an arbitrary datum ( i ) to a 
certain datum ( j ) can be achieved for the datum dependent coordinates and their 
covariance matrix with the following formulas [ 2,3 ] : 

xj = S. x. and ( C,)j = Sj ( Cx)i sjT J I (26) 
In which 

Sj = S, = I - G ( G~ G G" (27) 

Where S,, is the S- transformation matrix which derived from the pseudo inverse 
using the inner constraints. This Transformation matrix S ,  are useful when 
transforming a regular covariance matrix of coordinates into a singular one with the 
required rank deficiency or vice verse [ 3,8 1. In some cases it is required that only 
some of the netpoints should be contributed to the definition of the datum and that the 
trace of the covariance matrix of that subset of net points be rninimised. This can be 
achieved by the use of the matrix E inserted into equation (27) as follows: 



According to equation (2 I ) ,  the transformation matrix S, can be in general case 
nartitioned in submatrices of datum netpoints ( with sullix D ) and the remaining r 

4 netpoints ( with suffix N ). Then 

With symmetric Transfornlation matrix 

And - - - - and - 
Ql)" - Q", S"l, Xu - S," x" 

Both equations ( 28 ) and ( 29 ) can be considered as the general form of the 
transformation matrix , For a two dimensional geodetic monitoring network with m 
points, the transformation matrix S, in equation ( 29 ) can be expressed in more detail 
as follows: - 

In  which 

, for 1111 < k < = 111 J 



And 

Sik = 

Where ml is the number of datum - points in the network. 
If only d parameter are used to define the datum, then. The matrix GI, is quadratic 
matrix with the dimenision d , and the inverse ( G',, GD )'I is regular. The 
transformation matrix in equation ( 29) can be written in this case as follows : 

\ ! ,' 
and SN,= - CN GD' (32.b) 

alld QNN = N - ~ ~ ~  (32.c) 

The following relations represent the structure of the transformations matrices for 
different datum defects which their elements can preferable be computed using the 
approximate netpoints coordinates relative to the centroid of all the netpoints . For 
each number of datum defects, the appropriate matrices can be setup as subsets of the 
inner constraints matrix G, so that datum transformations may be performed for all 
types of horizontal geodetic monitoring networks [ 5 1. 

I - case of datum defect d = 2 

11 - case of rank defect d = 3 

0 ........ 1 [ n I ........ 0 :1_ ,I&,. =[ -vi~;) (34 C = 
-X, y1 ........ -Xn, y,, -q, W 

i.k 



In which 
?I = 7,-( 11m1 ) Z Y ~  k = I.... ml 
E, = x t - ( l I m ~ ) E x k  k = l.... ml 

I11 - case of datum defect d = 4 

5. NUMERICAL EXAMPLES 

5.1 Simulated Geodetic Network 

The schematic two - dimensional trilateration network is used to demonstrate the 
above derived results. This local network is composed of four new points P1 , . . . , P4 
with unknown coordinates as shown in fig. (1). The approximate coordinates of the 
new net points are listed in table (2) with respect to the selected local horizontal 
coordinate system. 

I 

Table 1 : Tie approximate coordinates of the 

netpoints 

points 

P1 0 0 9 
P2 

P3 

I 

100 

100 

I 

t, Y 0 

100 

P4 
I I 

A schematic geodetic network 0 100 Fig I . A schematic geodetic network 



The simulated network was adjusted as a free trilateration network using the inner 
constraints approach. In this study, the inner constraints matrix G was given in the - - 
following three cases as follows : 

5.2 Real Geodetic Network 

A two - dimensional hybrid network comprising six points is established in El - 
Mansoura city ( Sandoub zone ). The configuration of the network points is shown in 
Fig. 2. All directions and distances of the network legs were observed using SOKKIA 
( SET 5 ) Total station. The standard errors of the observed directions was three 
second whereas the standard deviation of the measured distances is * (5mm + 5ppm). 
The approximate coordinates of the netpoints are listed in table (2) with respect to the 
selected local horizontal coordinate system. 

I Table2. The approximate coordinates 

I of the net points 

Points I - 

Fig. 2 : A real geodetic network subjected to 
S - transformation. 



6. RESULTS AND DISCUSSlONS 

:The covariance matrix of the estimated coordinates C, , which has the minimum 
trace , was computed according the equation (10) as follows: 

Symm. 

1- Case ( A ) : 

If the coordinates of all four netpoints were contribute to the datum definition. This 
means that ( m = ml = 4 ,  u = ul = 8 and B1 = G ). 
The transformation matrix S,,, was conlputed using the equation (27) as follows : 

Symm. 

In which S I  = S,, with the Following properties 

St C = O , Sf = S"I srld S1 . St = SI (i.e Si is idernpotent ) 
And 

XS,,, = O  f o r i = l  ... 1 1 ,  k = l  ... u 

The corresponding covariance matrix of the estimated coordinates C1 , which was 

computed frorn the foliowit~g relation 

gave identical numerical values to those obtained by using inner constraints approach 
C,, ( i .e  CI = C,)and 

Trace (CI) = Trace (Cm) = 2.250 



11- Case ( B 1 : 

If three netpoints were contribute to the datum definition. This means that the three 
netpoints ( PI , P2 and Pj ) were datum points ( ml = 3 , u, = 6 , u = 8 ) 

The computed transformation matrix S2 were 

0.333 0.167 -0.167 0.167 -0.167 
0.583 -0.083 -0.41 7 -0.083 

0.583 -0.083 -0.417 
0.583 -0.083 

Symm. 0.583 

................................................. 
-0.667 0.167 -0.167 0.167 -0.167 
-0.333 -0.167 0.167 -0.167 0.167 

S Z =  
In which 

S D D = S ' ~ D D  , S L ) N = O  and S N N = l  

With the following property 

And the corresponding covariance matrix C2 in which the top lefi - hand ( 6 x 6 ) 
sub - tnatrix has minimum trace was computed as follows : 

0.056 -0.097 0.097 -0.056 -0.153 / 0.028 -0.02s 
0.236 -0.069 -0.181 0.014 -0.056 j 0.056 -0.056 

0.278 -0.028 -0.181 0.097 1 0.028 -0.028 
Cz=Cp= 0.278 -0.089 -0.097 j -0.028 0.028 

Symm. 0.236 0.056 1 -0.056 0.056 

In which 
= C"ND and Trace ( C2 ) = 1.334 + 1.556 = 2.89 



( If only three netpoints coordinates were contribute to the datum definition. This 
means that , the netpoints coordinates ( yl , XI and y~ ) were datum coordinates 
(u l  = d = 3 , ml = 3 / 2  ) 

The transformation matrix 

0.000 0.000 -1.000 1 1.000 0.000 0.000 "ml 
-1.000 ;1.000 1.000 1 1.000 0.000 
-1.000 0.000 0.000 i Symm. 1.000 0.000 
-1.000 -1.000 1.000 j 1 .ooo 

And the corresponding covariance matrix C3 was computed as follows 

Symm. 

\ 

I n  which 

Based on the previous results , the following relations can be deduced : 

C,,= Sn, C, S,,, = SmCdSm = Sn,C,S,, (36) 

C,, = S, Ca s'~,, = S,, C,,, sT,, = S,, Cp sTp (37) 



Table 3: Effect of the number and geometry of datum - points on the positlonar 
accuracy of the real network. 

~nstraints 
Variant 

(1) 
Six datum 

poinls 

0.41 
0.47 
0.42 
0.46 
0.40 
0.49 
0.29 
0.36 
0.34 
0.35 
0.29 
0.43 
0.28 
0.30 
0.23 
0.29 
0.27 
0.23 
1.164 
1.455 

Variant 
(2) 

Five datum 
points 

(Pi.Pz.Pd'~.Pr) 

0.39 
0.45 
0.44 
0.44 
0.38 
0.59 
0.29 
0.35 
0.38 
0.35 
0.28 
0.52 
0.26 
0.28 
0.22 
0.27 
0.26 
0.28 
1.222 -- 
I .488 

(3) 
Four datum 

poults 
( Pl.P2,P3P4 ) 

0.38 
0.43 
0.42 
0.39 
0.58 
0.59 
0.29 
0.34 
0.36 
0.33 
0.57 
0.51 
0.25 
0.26 
0.22 
0.20 
0.34 
0.29 
1.345 
1.691 

aslraints 
Variant 

(4) 
Three 
datum 
points 

( P,.P?,P3 
0.33 
0.37 
0.29 
1 .o 1 
0.96 
0.58 
0.26 
0.28 
0.25 
0.91 
0.89 
0.47 
0.20 
0.25 
0.14 
0.44 
0.34 
0.33 
2.606 
4.100 

Variant 
(5) 

Two datum 
points 
( Pl.P2) 

0.24 
0.24 
0.97 
1.81 
1.70 
0.90 
0.24 
0.24 
0.90 
1.74 
1.66 
0.84 
0.00 
0.00 
0.37 
0.47 
0.37 
0.32 
8.022 

35.566 

Minimal cc 

(6)  
Three datum 
coordinates 
(Yl , Yl . Y? ) 

Variant 
(7) 

Three daturn 
coordinates 

( ~ 5 2 ~ 6 1 % )  

Table 3. shows the effect of number and geometry of the datum-points on the points - 
position accuracy for real geodetic network, while table (4) shows the transformed 
corrections to the approximate coordinates for the seven network variants. From these 
results, it can be found that: 

1 -  As the number of the datum-points within the network decrease, the numerical 
values of the positional error opi as well as the parameters of error ellipse 
( A; ,Bi ) increase. 

2- As the number of the datum-points within the network decrease, the numerical 
values of the trace of the covariance matrix of the estimated coordinates and the 
norm of the solution vector increase. . . 

3- The datum-points receive the smallest numerical values of the correction than 
the remaining points within the network. 



Table 4: The transformed corrections to the approximate coordinates (cm). 

I Total inner 
lints 

Variant 
-2J.l- 
Six datum 

points 

-0.20 
0.83 ---- - . 
-0.33 
-0.25 
-0.05 
-0.53 
-0.08 
-0.18 
0.28 
0.13 
0.3 7 
0.02 

Partial inner constraints . 1 Minimal constraints I 

Variant 
(7) 

Three datum 
coordinates 
(XS, y6 3 % ) 

7. CONCLUSIONS AND RECOMMENDATIONS: 

From the previous discussions, the following conclusions can be drawn: 

Variant 
(6) 

Threedatum 
coordinates 

I -  The S - transformation is a powe&l computational tool which is capable of 
transfornung one adjustment to another without going through the procedure of 
every adjustment. 

2- S - transformation can be used to select the proper coordinate datum for both 
control and monitoring geodetic networks as well as to analyse the stability of the 
reference points. 

3- Partial trace minimization can be considered as the general adjustment approach for 
free geodetic networks based on the inner- constraints. 

4- 'The transformation matrix S is dependent upon the following points: 
a- The number and the geometry of the datum - points which contributes to 

the datum definition. 
b- The inner constraints matrix G or B. 
c- The number of the datum defect d. 

5- Positional accuracy of points in monitoring networks depends heavily on the spatial 
distribution of its datum-detinitions points. 

6- The ize, shape and orientation of the error ellipses associated with the adjusted 
netpoints are dependent upon the selection and distribution of the datum-points . 

7- To counteract the weakness in orientation, the selected datum subset can be 
characterized by a balanced and good geometry relative to  the size and shape of 
the whole network. 

Variant 
(5) 

Two 
datum 

Variant 
(2) 

Five datum 
mints 

Variant 
(3) 

Four daturn 
points 

Variant 
(4) 

Thee 
daltun 



8- The coordinate discrepancies indicate the possible movements of netpoints 
between the observation epochs, but only if the datum is the same at each epoch 

9- Finally, S- transformation can also be used to solve the problem of connecting a 
secondary control network to a primary network, or when a GPS network is to be 
connected to an existing terrestrial network. 
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