Experimental and Computational Study of Melting of Paraffin Wax Inside a Cylindrical Capsules of Elliptical Cross Section

Document Type : Original Article


1 Mechanical Engineering Dept, Future Institute of Engineering and Technology, Talkha Egypt.

2 Mech. Power Eng. Dept, Faculty of Engineering, Mansoura University, Mansoura, Egypt

3 Mech. Eng. Dept., Higher Technological Institute, 10th of Ramadan, Asharqia, Egypt


This paper focuses on the melting of phase change material capsulated in the elliptical cross-section horizontal cylinder under convective boundary conditions. Different parameters are discussed namely, the HTF inlet temperature and velocity and the aspect ratio of the capsule cross-section. The effect of HTF inlet temperature, inlet velocity, and encapsulant aspect ratio was studied using the CFD software FLUENT6.3.26. A comparison between the numerical and experimental results was made for the system. The experimental results matched well with the heat transfer model. It is shown that the inlet temperature of the heat transfer fluid (HTF) has a great effect on the process of paraffin wax melting. The increase of HTF inlet temperatures increases the PCM liquid fraction and decreases at the same time the total time of melting the capsulated paraffin wax. The geometry of the capsule cross-section represented by its aspect ratio has a sensible effect on the process of paraffin wax melting. Decreasing the aspect ratio of the capsule, i.e elongated the capsule in the direction of flow increasing the PCM liquid fraction and decreases the total time of melting the capsulated paraffin wax. The increase of HTF inlet velocity has a very weak effect on the process of paraffin wax melting.


[1] Kapsalis, V. and D. Karamanis, Solar thermal energy storage and heat pumps with phase change materials. Applied Thermal Engineering, 2016: p. 1212-1224.

[2] Zalba, B., et al., Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. AppliedThermal Engineering, 2003: p.251-283.

[3] Sharma, Atul, et al., Review on thermal and applications. Renewable and Sustainable Energy Reviews, 2009: p.318-345.

[4] Yang, J., et al., Experimental study on enhancement of thermal energy storage with phase-change material. Applied Energy, 2016: p. 164-176.

[5] Wei J, Kawaguchi Y, Hirano S, Takeuchi H. Study on a PCM heat storage system for rapid heat supply. Applied Thermal
Engineering 2005;25:2903–20.

[6] Kalaiselvam Siva, Marcel Xavier Lawrence and G. R. Kumaresh,(2010), Experimental and numerical investigation of phase change materials with finned encapsulation for energy-efficient buildings, Journal of Building Performance Simulation, Vol. 3, No. 4, pp. 245-254.

[7] S. Kalaiselvam, M. Veerappan, A. Arul Aaron, S. Iniyan, Experimental and analytical investigation of solidification and melting characteristics of PCMs inside cylindrical encapsulation, Int. J. Therm. Sci. 47 (2008),858–874.

[8] A. Felix Regin, S.C. Solanki, J.S. Saini, Latent heat thermal energy storage using cylindrical capsule: numerical and
experimental investigations, Renew. Energy, 31 (2006) 2025–2041.

[9] K. El Omari, T. Kousksou, Y. Le Guer, Impact of shape of container on natural convection and melting inside enclosures used for passive cooling of electronic devices, Appl. Therm. Eng. 31 (2011) 3022–3035.

[10] T. Saitoh, K. Hirose, High Rayleigh number solutions to problems of latent heat thermal energy storage in a horizontal cylinder capsule, ASME J. Heat Transf. 104 (1982), 545–553.

[11] H. Rieger, U. Projahn, M. Bareiss, H. Beer, Heat transfer during melting inside a horizontal tube, ASME J. Heat Transf. 105, (1983), 226–234.

[12] C.J. Ho, R. Viskanta, Heat transfer during inward melting in a horizontal tube, Int. J. Heat Mass Transf. 27 (1984), 705–716.

[13] H.S. Yoo, S.T. Ro, Numerical analysis of the phase change processes by coordinate transformations, Trans. KSME 10 (1986), 585–592.
[14] A. Prasad, S. Sengupta, Nusselt number and melt time correlations for melting inside a horizontal cylinder subjected to an isothermal wall temperature condition, ASME J. Heat Tansf. 110 (1988) 340–345.

[15] Agyenim F, Hewitt N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews 2010;14:615–28.

[16] Muthukumar Palanisamy and Hakeem Niyas, Comparison of Thermal Characteristics of Sensible and Latent Heat Storage Materials Encapsulated in Different Capsule Configurations, https://www. researchgate.net /publication/320066441.

[17] Jones, B.J., et al., Experimental and numerical study of melting in a cylinder.International Journal of Heat and Mass Transfer, 2006: p. 2724-2738.

[18] E. Assis, L. Katsman, G. Ziskind, R. Letan, Numerical and experimental study of melting in a spherical shell, Int. J. Heat Mass Transf. 50 (2007) 1790–1804.

[19] F.L. Tan, S.F. Hosseinizadeh, J.M. Khodadadi, Liwu Fan, Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule, Int. J. Heat Mass Transf. 52 (2009) 3464–3472.
[20] Sharifi, N., et al., Melting and solidification enhancement using a combined heatpipe, foil approach.
International Journal of Heat and Mass Transfer, 2014: p.930-941.

[21] V.R. Voller, C. Prakash, A fixed grid numerical modeling methodology for convection-diffusion mushy region phase-change problems, Int. J. Heat Mass Transf. 30 (8) (1987) 1709e1719.

[22] V.R. Voller, C.R. Swaminathan, General source-based method for solidification phase change, Numer. Heat. Transf. Part B Fundam. 19 (2) (1991) 175e189.
Volume 43, Issue 2
Volume 43(2) issued on 1/4/2020 in 3 Parts (PART 1: Mechanical Eng., PART 2: Civil Eng., PART 3: Architecture Eng.)
April 2020
Pages 99-108